下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Xavier De Kestelier:太空建築師的冒險之旅」- Adventures of an Interplanetary Architect

觀看次數:1938  • 

框選或點兩下字幕可以直接查字典喔!

I must have been about 12 years old when my dad took me to an exhibition on space, not far from here, in Brussels. And the year was about—I think it was 1988, so it was the end of the Cold War. There was a bit of an upmanship going on between the Americans and the Russians bringing bits to that exhibition. NASA brought a big blow-up space shuttle, but the Russians, they brought a Mir space station. It was actually the training module, and you could go inside and check it all out. It was the real thing—where the buttons were, where the wires were, where the astronauts were eating, where they were working. And when I came home, the first thing I did, I started drawing spaceships. Now, these weren't science fiction spaceships, no. They were actually technical drawings. They were cutaway sections of what kind of structure would be made out of, where the wires were, where the screws were.

So fortunately, I didn't become a space engineer, but I did become an architect. These are some of the projects that I've been involved with over the last decade and a half. All these projects are quite different, quite different shapes, and it is because they are built for different environments. They have different constraints. And I think design becomes really interesting when you get really harsh constraints.

Now, these projects have been all over the world. A few years ago, this map wasn't good enough. It was too small. We had to add this one, because we were going to do a project on the Moon for the European Space Agency; they asked us to design a Moon habitat—and one on Mars with NASA, a competition to look at a habitation on Mars.

Whenever you go to another place, as an architect and try to design something, you look at the local architecture, the precedents that are there. Now, on the Moon, it's kind of difficult, of course, because there's only this. There's only the Apollo missions. So last that we went there, I wasn't even born yet, and we only spent about three days there. So for me, that's kind of a long camping trip, isn't it, but a rather expensive one.

Now, the tricky thing, when you're going to build on another planet or a moon, is how to get it there, how to get it there. So first of all, to get a kilogram, for example, to the Moon's surface, it will cost about 200,000 dollars, very expensive. So you want to keep it very light. Second, space. Space is limited. Right? This is the Ariane 5 rocket. The space you have there is about four and a half meters by seven meters, not that much. So it needs to be an architectural system that is both compact, or compactable, and light, and I think I've got one right here. It's very compact, and it's very light. And actually, this is one I made earlier.

Now, there's one problem with it, that inflatables are quite fragile. They need to be protected, specifically, when you go to a very harsh environment like the Moon. Look at it like this. The temperature difference on a Moon base could be anything up to 200 degrees. On one side of the base, it could be 100 degrees Celsius and on the other side, it could be minus 100 degrees. We need to protect ourselves from that.

The Moon also does not have any magnetic fields, which means that any radiation—solar radiation, cosmic radiation—will hit the surface. We need to protect ourselves from that as well, protect the astronauts from that. And then third, but definitely not last, the Moon does not have any atmosphere, which means any meteorites coming into it will not get burned up, and they'll hit the surface. That's why the Moon is full of craters. Again, we need to protect the astronauts from that.

So what kind of structure do we need? Well, the best thing is really a cave, because a cave has a lot of mass, and we need mass. We need mass to protect ourselves from the temperatures, from the radiation and from the meteorites. So this is how we solved it. We have indeed the blue part, as you can see. That's an inflatable for our Moon base. It gives a lot of living space and a lot of lab space, and attached to it you have a cylinder, and that has all the support structures in, all the life support and also the airlock. And on top of that, we have a structure, that domed structure, that protects ourselves, has a lot of mass in it. Where are we going to get this material from? Are we going to bring concrete and cement from Earth to the Moon? Well, of course not, because it's way too heavy. It's too expensive. So we're going to go and use local materials.

Now, local materials are something we deal with on Earth as well. Wherever we build or whatever country we build in, we always look at, what are the local materials here? The problem with the Moon is, what are the local materials? Well, there's not that many. Actually, we have one. It's moondust, or, fancier scientific name, regolith, Moon regolith. Great thing is, it's everywhere, right? The surface is covered with it. It's about 20 centimeters up to a few meters everywhere. But how are we going to build with it? Well, we're going to use a 3D printer. Whenever I ask any of you what a 3D printer is, you're probably all thinking, well, probably something about this size and it would print things that are about this size. So of course I'm not going to bring a massive 3D printer to the Moon to print my Moon base. I'm going to use a much smaller device, something like this one here. So this is a small device, a small robot rover, that has a little scoop, and it brings the regolith to the dome and then it lays down a thin layer of regolith, and then you would have the robot that will solidify it, layer by layer, until it creates, after a few months, the full base.

You might have noticed that it's quite a particular structure that we're printing, and I've got a little example here. What we call this is a closed-cell foam structure. Looks quite natural. The reason why we're using this as part of that shell structure is that we only need to solidify certain parts, which means we have to bring less binder from Earth, and it becomes much lighter.

Now—that approach of designing something and then covering it with a protective dome we also did for our Mars project. You can see it here, three domes. And you see the printers printing these dome structures. There's a big difference between Mars and the Moon, and let me explain it. This diagram shows you to scale the size of Earth and the Moon and the real distance, about 400,000 kilometers. If we then go to Mars, the distance from Mars to Earth—and this picture here is taken by the rover on Mars, Curiosity, looking back at Earth. You kind of see the little speckle there, that's Earth, 400 million kilometers away. The problem with that distance is that it's a thousand times the distance of the Earth to the Moon, pretty far away, but there's no direct radio contact with, for example, the Curiosity rover. So I cannot teleoperate it from Earth. I can't say, "Oh, Mars rover, go left," because that signal would take 20 minutes to get to Mars. Then the rover might go left, and then it will take another 20 minutes before it can tell me, "Oh yeah, I went left." So the distance, so rovers and robots and going to have to work autonomously. The only issue with it is that missions to Mars are highly risky. We've only seen it a few weeks ago. So what if half the mission doesn't arrive at Mars. What do we do? Well, instead of building just one or two rovers like we did on the Moon, we're going to build hundreds of them. And it's a bit like a termite's mound, you know?

Termites, I would take half of the colony of the termites away, they would still be able to build the mound. It might take a little bit longer. Same here. If half of our rovers or robots don't arrive, well, it will take a bit longer, but you will still be able to do it. So here we even have three different rovers. In the back, you see the digger. It's really good at digging regolith. Then we have the transporter, great at taking regolith and bringing it to the structure. And the last ones, the little ones with the little legs, they don't need to move a lot. What they do is they go and sit on a layer of regolith and then microwave it together, and layer by layer create that dome structure.

Now—we also want to try that out, so we went out on a road trip, and we created our own swarm of robots. There you go. So we built 10 of those. It's a small swarm. And we took six tons of sand, and we tried out how these little robots would actually be able to move sand around, Earth sand in this case. And they were not teleoperated. Right? Nobody was telling them go left, go right, or giving them a predescribed path. No. They were given a task: move sand from this area to that area. And if they came across an obstacle, like a rock, they had to sort it out themselves. Or they came across another robot, they had to be able to make decisions. Or even if half of them fell out, their batteries died, they still had to be able to finish that task.

Now, I've talked about redundancy. But that was not only with the robots. It was also with the habitats. On the Mars project, we decided to do three domes, because if one didn't arrive, the other two could still form a base, and that was mainly because each of the domes actually have a life support system built in the floor, so they can work independently.

So in a way, you might think, well, this is pretty crazy. Why would you, as an architect, get involved in space? Because it's such a technical field. Well, I'm actually really convinced that from a creative view or a design view, you are able to solve really hard and really constrained problems. And I really feel that there is a place for design and architecture in projects like interplanetary habitation.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!