使用chrome瀏覽器,輕鬆學英文。

如有任何問題,歡迎聯絡我們

希平方
攻其不背
App 開放下載中
希平方
攻其不背
App 開放下載中
免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!

「Janine Benyus:以大自然為靈感的仿生學」- Biomimicry's Surprising Lessons from Nature's Engineers


框選或點兩下字幕可以直接查字典喔!

It is a thrill to be here at a conference that's devoted to "Inspired by Nature"—you can imagine. And I'm also thrilled to be in the foreplay section. Did you notice this section is foreplay? Because I get to talk about one of my favorite critters, which is the Western Grebe. You haven't lived until you've seen these guys do their courtship dance. I was on Bowman Lake in Glacier National Park, which is a long, skinny lake with sort of mountains upside down in it, and my partner and I have a rowing shell. And so we were rowing, and one of these Western Grebes came along. And what they do for their courtship dance is, they go together, the two of them, the two mates, and they begin to run underwater. They paddle faster, and faster, and faster, until they're going so fast that they literally lift up out of the water, and they're standing upright, sort of paddling the top of the water. And one of these Grebes came along while we were rowing. And so we're in a skull, and we're moving really, really quickly. And this Grebe, I think, sort of, mistaked us for a prospect, and started to run along the water next to us, in a courtship dance—for miles. It would stop, and then start, and then stop, and then start. Now that is foreplay.

I came this close to changing species at that moment. Obviously, life can teach us something in the entertainment section. Life has a lot to teach us. But what I'd like to talk about today is what life might teach us in technology and in design. What's happened since the book came out—the book was mainly about research in biomimicry—and what's happened since then is architects, designers, engineers —people who make our world—have started to call and say, we want a biologist to sit at the design table to help us, in real time, become inspired. Or—and this is the fun part for me—we want you to take us out into the natural world. We'll come with a design challenge and we find the champion adapters in the natural world, who might inspire us.

So this is a picture from a Galapagos trip that we took with some wastewater treatment engineers; they purify wastewater. And some of them were very resistant, actually, to being there. What they said to us at first was, you know, we already do biomimicry. We use bacteria to clean our water. And we said, well, that's not exactly being inspired by nature. That's bioprocessing, you know; that's bio-assisted technology: using an organism to do your wastewater treatment is an old, old technology called "domestication." This is learning something, learning an idea, from an organism and then applying it. And so they still weren't getting it.

So we went for a walk on the beach and I said, well, give me one of your big problems. Give me a design challenge, sustainability speed bump, that's keeping you from being sustainable. And they said scaling, which is the build-up of minerals inside of pipes. And they said, you know what happens is, mineral—just like at your house—mineral builds up. And then the aperture closes, and we have to flush the pipes with toxins, or we have to dig them up. So if we had some way to stop this scaling—and so I picked up some shells on the beach. And I asked them, what is scaling? What's inside your pipes? And they said, calcium carbonate. And I said, that's what this is; this is calcium carbonate.

And they didn't know that. They didn't know that what a seashell is, it's templated by proteins, and then ions from the seawater crystallize in place to create a shell. So the same sort of a process, without the proteins, is happening on the inside of their pipes. They didn't know. This is not for lack of information; it's a lack of integration. You know, it's a silo, people in silos. They didn't know that the same thing was happening. So one of them thought about it and said, OK, well, if this is just crystallization that happens automatically out of seawater—self-assembly—then why aren't shells infinite in size? What stops the scaling? Why don't they just keep on going? And I said, well, in the same way that they exude a protein and it starts the crystallization—and then they all sort of leaned in—they let go of a protein that stops the crystallization. It literally adheres to the growing face of the crystal. And, in fact, there is a product called TPA that's mimicked that protein—that stop-protein—and it's an environmentally friendly way to stop scaling in pipes.

That changed everything. From then on, you could not get these engineers back in the boat. The first day they would take a hike, and it was, click, click, click, click. Five minutes later they were back in the boat. We're done. You know, I've seen that island. After this, they were crawling all over. They would snorkel for as long as we would let them snorkel. What had happened was that they realized that there were organisms out there that had already solved the problems that they had spent their careers trying to solve.

Learning about the natural world is one thing; learning from the natural world—that's the switch. That's the profound switch. What they realized was that the answers to their questions are everywhere; they just needed to change the lenses with which they saw the world. 3.8 billion years of field-testing. 10 to 30—Craig Venter will probably tell you; I think there's a lot more than 30 million—well-adapted solutions. The important thing for me is that these are solutions solved in context. And the context is the Earth—the same context that we're trying to solve our problems in. So it's the conscious emulation of life's genius. It's not slavishly mimicking—although Al is trying to get the hairdo going—it's not a slavish mimicry; it's taking the design principles, the genius of the natural world, and learning something from it.

Now, in a group with so many IT people, I do have to mention what I'm not going to talk about, and that is that your field is one that has learned an enormous amount from living things, on the software side. So there's computers that protect themselves, like an immune system, and we're learning from gene regulation and biological development. And we're learning from neural nets, genetic algorithms, evolutionary computing. That's on the software side. But what's interesting to me is that we haven't looked at this, as much. I mean, these machines are really not very high tech in my estimation in the sense that there's dozens and dozens of carcinogens in the water in Silicon Valley. So the hardware is not at all up to snuff in terms of what life would call a success. So what can we learn about making—not just computers, but everything? The plane you came in, cars, the seats that you're sitting on. How do we redesign the world that we make, the human-made world? More importantly, what should we ask in the next 10 years? And there's a lot of cool technologies out there that life has.

What's the syllabus? Three questions, for me, are key. How does life make things? This is the opposite; this is how we make things. It's called heat, beat and treat—that's what material scientists call it. And it's carving things down from the top, with 96 percent waste left over and only 4 percent product. You heat it up; you beat it with high pressures; you use chemicals. OK. Heat, beat and treat.

Life can't afford to do that. How does life make things? How does life make the most of things? That's a geranium pollen. And its shape is what gives it the function of being able to tumble through air so easily. Look at that shape. Life adds information to matter. In other words: structure. It gives it information. By adding information to matter, it gives it a function that's different than without that structure. And thirdly, how does life make things disappear into systems? Because life doesn't really deal in things; there are no things in the natural world divorced from their systems. Really quick syllabus. As I'm reading more and more now, and following the story, there are some amazing things coming up in the biological sciences. And at the same time, I'm listening to a lot of businesses and finding what their sort of grand challenges are. The two groups are not talking to each other. At all.

What in the world of biology might be helpful at this juncture, to get us through this sort of evolutionary knothole that we're in? I'm going to try to go through 12, really quickly.

One that's exciting to me is self-assembly. Now, you've heard about this in terms of nanotechnology. Back to that shell: the shell is a self-assembling material. On the lower left there is a picture of mother of pearl forming out of seawater. It's a layered structure that's mineral and then polymer, and it makes it very, very tough. It's twice as tough as our high-tech ceramics. But what's really interesting: unlike our ceramics that are in kilns, it happens in seawater. It happens near, in and near, the organism's body. This is Sandia National Labs. A guy named Jeff Brinker has found a way to have a self-assembling coding process. Imagine being able to make ceramics at room temperature by simply dipping something into a liquid, lifting it out of the liquid, and having evaporation force the molecules in the liquid together, so that they jigsaw together in the same way as this crystallization works. Imagine making all of our hard materials that way. Imagine spraying the precursors to a PV cell, to a solar cell, onto a roof, and having it self-assemble into a layered structure that harvests light.

Here's an interesting one for the IT world: bio-silicon. This is a diatom, which is made of silicates. And so silicon, which we make right now—it's part of our carcinogenic problem in the manufacture of our chips—this is a bio-mineralization process that's now being mimicked. This is at UC Santa Barbara. Look at these diatoms. This is from Ernst Haeckel's work. Imagine being able to—and, again, it's a templated process, and it solidifies out of a liquid process—imagine being able to have that sort of structure coming out at room temperature. Imagine being able to make perfect lenses. On the left, this is a brittle star; it's covered with lenses that the people at Lucent Technologies have found have no distortion whatsoever. It's one of the most distortion-free lenses we know of. And there's many of them, all over its entire body. What's interesting, again, is that it self-assembles. A woman named Joanna Aizenberg, at Lucent, is now learning to do this in a low-temperature process to create these sort of lenses. She's also looking at fiber optics. That's a sea sponge that has a fiber optic. Down at the very base of it, there's fiber optics that work better than ours, actually, to move light, but you can tie them in a knot; they're incredibly flexible.

Here's another big idea: CO2 as a feedstock. A guy named Geoff Coates, at Cornell, said to himself, you know, plants do not see CO2 as the biggest poison of our time. We see it that way. Plants are busy making long chains of starches and glucose, right, out of CO2. He's found a way—he's found a catalyst—and he's found a way to take CO2 and make it into polycarbonates. Biodegradable plastics out of CO2—how plant-like.

Solar transformations: the most exciting one. There are people who are mimicking the energy-harvesting device inside of purple bacterium, the people at ASU. Even more interesting, lately, in the last couple of weeks, people have seen that there's an enzyme called hydrogenase that's able to evolve hydrogen from proton and electrons, and is able to take hydrogen up—basically what's happening in a fuel cell, in the anode of a fuel cell and in a reversible fuel cell. In our fuel cells, we do it with platinum; life does it with a very, very common iron. And a team has now just been able to mimic that hydrogen-juggling hydrogenase. That's very exciting for fuel cells—to be able to do that without platinum.

Power of shape: here's a whale. We've seen that the fins of this whale have tubercles on them. And those little bumps actually increase efficiency in, for instance, the edge of an airplane—increase efficiency by about 32 percent. Which is an amazing fossil fuel savings, if we were to just put that on the edge of a wing. Color without pigments: this peacock is creating color with shape. Light comes through, it bounces back off the layers; it's called thin-film interference. Imagine being able to self-assemble products with the last few layers playing with light to create color. Imagine being able to create a shape on the outside of a surface, so that it's self-cleaning with just water. That's what a leaf does. See that up-close picture? That's a ball of water, and those are dirt particles. And that's an up-close picture of a lotus leaf. There's a company making a product called Lotusan, which mimics—when the building facade paint dries, it mimics the bumps in a self-cleaning leaf, and rainwater cleans the building.

Water is going to be our big, grand challenge: quenching thirst. Here are two organisms that pull water. The one on the left is the Namibian beetle pulling water out of fog. The one on the right is a pill bug—pulls water out of air, does not drink fresh water. Pulling water out of Monterey fog and out of the sweaty air in Atlanta, before it gets into a building, are key technologies.

Separation technologies are going to be extremely important. What if we were to say, no more hard rock mining? What if we were to separate out metals from waste streams, small amounts of metals in water? That's what microbes do; they chelate metals out of water. There's a company here in San Francisco called MR3 that is embedding mimics of the microbes' molecules on filters to mine waste streams. Green chemistry is chemistry in water. We do chemistry in organic solvents. This is a picture of the spinnerets coming out of a spider and the silk being formed from a spider. Isn't that beautiful? Green chemistry is replacing our industrial chemistry with nature's recipe book. It's not easy, because life uses only a subset of the elements in the periodic table. And we use all of them, even the toxic ones. To figure out the elegant recipes that would take the small subset of the periodic table, and create miracle materials like that cell, is the task of green chemistry.

Timed degradation: packaging that is good until you don't want it to be good anymore, and dissolves on cue. That's a mussel you can find in the waters out here, and the threads holding it to a rock are timed; at exactly two years, they begin to dissolve.

Healing: this is a good one. That little guy over there is a tardigrade. There is a problem with vaccines around the world not getting to patients. And the reason is that the refrigeration somehow gets broken; what's called the "cold chain" gets broken. A guy named Bruce Rosner looked at the tardigrade—which dries out completely, and yet stays alive for months and months and months, and is able to regenerate itself. And he found a way to dry out vaccines—encase them in the same sort of sugar capsules as the tardigrade has within its cells—meaning that vaccines no longer need to be refrigerated. They can be put in a glove compartment, OK. Learning from organisms. This is a session about water—learning about organisms that can do without water, in order to create a vaccine that lasts and lasts and lasts without refrigeration.

I'm not going to get to 12. But what I am going to do is tell you that the most important thing, besides all of these adaptations, is the fact that these organisms have figured out a way to do the amazing things they do while taking care of the place that's going to take care of their offspring. When they're involved in foreplay, they're thinking about something very, very important—and that's having their genetic material remain, 10,000 generations from now. And that means finding a way to do what they do without destroying the place that'll take care of their offspring. That's the biggest design challenge. Luckily, there are millions and millions of geniuses willing to gift us with their best ideas. Good luck having a conversation with them.

Thank you.

Talk about foreplay, I—we need to get to 12, but really quickly. Oh really? Yeah. Just like, you know, like the 10-second version of 10, 11 and 12. Because we just—your slides are so gorgeous, and the ideas are so big, I can't stand to let you go down without seeing 10, 11 and 12. OK, put this—OK, I'll just hold this thing. OK, great. OK, so that's the healing one. Sensing and responding: feedback is a huge thing. This is a locust. There can be 80 million of them in a square kilometer, and yet they don't collide with one another. And yet we have 3.6 million car collisions a year. Right. There's a person at Newcastle who has figured out that it's a very large neuron. And she's actually figuring out how to make a collision-avoidance circuitry based on this very large neuron in the locust.

This is a huge and important one, number 11. And that's the growing fertility. That means, you know, net fertility farming. We should be growing fertility. And, oh yes—we get food, too. Because we have to grow the capacity of this planet to create more and more opportunities for life. And really, that's what other organisms do as well. In ensemble, that's what whole ecosystems do: they create more and more opportunities for life. Our farming has done the opposite. So, farming based on how a prairie builds soil, ranching based on how a native ungulate herd actually increases the health of the range, even wastewater treatment based on how a marsh not only cleans the water, but creates incredibly sparkling productivity.

This is the simple design brief. I mean, it looks simple because the system, over 3.8 billion years, has worked this out. That is, those organisms that have not been able to figure out how to enhance or sweeten their places, are not around to tell us about it. That's the twelfth one. Life—and this is the secret trick; this is the magic trick—life creates conditions conducive to life. It builds soil; it cleans air; it cleans water; it mixes the cocktail of gases that you and I need to live. And it does that in the middle of having great foreplay and meeting their needs. So it's not mutually exclusive. We have to find a way to meet our needs, while making of this place an Eden.

Janine, thank you so much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!