下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Brian Cox:歐洲粒子物理研究中心的超級強子對撞機」- CERN's Supercollider

觀看次數:2263  • 

框選或點兩下字幕可以直接查字典喔!

This is the Large Hadron Collider. It's 27 kilometers in circumference. It's the biggest scientific experiment ever attempted. Over 10,000 physicists and engineers from 85 countries around the world have come together over several decades to build this machine. What we do is we accelerate protons—so, hydrogen nuclei—around 99.999999 percent the speed of light. Right? At that speed, they go around that 27 kilometers 11,000 times a second. And we collide them with another beam of protons going in the opposite direction. We collide them inside giant detectors. They're essentially digital cameras. And this is the one that I work on, ATLAS. You get some sense of the size—you can just see these EU standard-size people underneath.

You get some sense of the size: 44 meters wide, 22 meters in diameter, 7,000 tons. And we re-create the conditions that were present less than a billionth of a second after the universe began up to 600 million times a second inside that detector—immense numbers. And if you see those metal bits there—those are huge magnets that bend electrically charged particles, so it can measure how fast they're traveling. This is a picture about a year ago. Those magnets are in there. And, again, a EU standard-size, real person, so you get some sense of the scale. And it's in there that those mini-Big Bangs will be created, sometime in the summer this year.

And actually, this morning, I got an email saying that we've just finished, today, building the last piece of ATLAS. So as of today, it's finished. I'd like to say that I planned that for TED, but I didn't. So it's been completed as of today.

Yeah, it's a wonderful achievement. So, you might be asking, "Why? Why create the conditions that were present less than a billionth of a second after the universe began?" Well, particle physicists are nothing if not ambitious. And the aim of particle physics is to understand what everything's made of, and how everything sticks together. And by everything I mean, of course, me and you, the Earth, the Sun, the 100 billion suns in our galaxy and the 100 billion galaxies in the observable universe. Absolutely everything.

Now you might say, "Well, OK, but why not just look at it? You know? If you want to know what I'm made of, let's look at me." Well, we found that as you look back in time, the universe gets hotter and hotter, denser and denser, and simpler and simpler. Now, there's no real reason I'm aware of for that, but that seems to be the case. So, way back in the early times of the universe, we believe it was very simple and understandable. All this complexity, all the way to these wonderful things—human brains—are a property of an old and cold and complicated universe. Back at the start, in the first billionth of a second, we believe, or we've observed, it was very simple.

It's almost like ... imagine a snowflake in your hand, and you look at it, and it's an incredibly complicated, beautiful object. But as you heat it up, it'll melt into a pool of water, and you would be able to see that, actually, it was just made of H20, water. So it's in that same sense that we look back in time to understand what the universe is made of. And, as of today, it's made of these things. Just 12 particles of matter, stuck together by four forces of nature. The quarks, these pink things, are the things that make up protons and neutrons that make up the atomic nuclei in your body. The electron—the thing that goes around the atomic nucleus—held around in orbit, by the way, by the electromagnetic force that's carried by this thing, the photon. The quarks are stuck together by other things called gluons.

And these guys, here, they're the weak nuclear force, probably the least familiar. But, without it, the sun wouldn't shine. And when the sun shines, you get copious quantities of these things, called neutrinos, pouring out. Actually, if you just look at your thumbnail—about a square centimeter—there are something like 60 billion neutrinos per second from the sun, passing through every square centimeter of your body. But you don't feel them, because the weak force is correctly named—very short range and very weak, so they just fly through you.

And these particles have been discovered over the last century, pretty much. The first one, the electron, was discovered in 1897, and the last one, this thing called the tau neutrino, in the year 2000. Actually just—I was going to say, just up the road in Chicago. I know it's a big country, America, isn't it? Just up the road. Relative to the universe, it's just up the road.

So, this thing was discovered in the year 2000, so it's a relatively recent picture. One of the wonderful things, actually, I find, is that we've discovered any of them, when you realize how tiny they are. You know, they're a step in size from the entire observable universe. So, 100 billion galaxies, 13.7 billion light years away—a step in size from that to Monterey, actually, is about the same as from Monterey to these things. Absolutely, exquisitely minute, and yet we've discovered pretty much the full set.

So, one of my most illustrious forebears at Manchester University, Ernest Rutherford, discoverer of the atomic nucleus, once said, "All science is either physics or stamp collecting." Now, I don't think he meant to insult the rest of science, although he was from New Zealand, so it's possible.

But what he meant was that what we've done, really, is stamp collect there. OK, we've discovered the particles, but unless you understand the underlying reason for that pattern—you know, why it's built the way it is—really you've done stamp collecting. You haven't done science. Fortunately, we have probably one of the greatest scientific achievements of the twentieth century that underpins that pattern. It's the Newton's laws, if you want, of particle physics. It's called the standard model—beautifully simple mathematical equation. You could stick it on the front of a T-shirt, which is always the sign of elegance. This is it.

I've been a little disingenuous, because I've expanded it out in all its gory detail. This equation, though, allows you to calculate everything—other than gravity—that happens in the universe. So, you want to know why the sky is blue, why atomic nuclei stick together—in principle, you've got a big enough computer—why DNA is the shape it is. In principle, you should be able to calculate it from that equation.

But there's a problem. Can anyone see what it is? A bottle of champagne for anyone that tells me. I'll make it easier, actually, by blowing one of the lines up. Basically, each of these terms refers to some of the particles. So those Ws there refer to the Ws, and how they stick together. These carriers of the weak force, the Zs, the same. But there's an extra symbol in this equation: H. Right, H. H stands for Higgs particle. Higgs particles have not been discovered. But they're necessary: they're necessary to make that mathematics work. So all the exquisitely detailed calculations we can do with that wonderful equation wouldn't be possible without an extra bit. So it's a prediction: a prediction of a new particle.

What does it do? Well, we had a long time to come up with good analogies. And back in the 1980s, when we wanted the money for the LHC from the U.K. government, Margaret Thatcher, at the time, said, "If you guys can explain, in language a politician can understand, what the hell it is that you're doing, you can have the money. I want to know what this Higgs particle does." And we came up with this analogy, and it seemed to work. Well, what the Higgs does is, it gives mass to the fundamental particles. And the picture is that the whole universe—and that doesn't mean just space, it means me as well, and inside you—the whole universe is full of something called a Higgs field. Higgs particles, if you will.

The analogy is that these people in a room are the Higgs particles. Now when a particle moves through the universe, it can interact with these Higgs particles. But imagine someone who's not very popular moves through the room. Then everyone ignores them. They can just pass through the room very quickly, essentially at the speed of light. They're massless. And imagine someone incredibly important and popular and intelligent walks into the room. They're surrounded by people, and their passage through the room is impeded. It's almost like they get heavy. They get massive. And that's exactly the way the Higgs mechanism works. The picture is that the electrons and the quarks in your body and in the universe that we see around us are heavy, in a sense, and massive, because they're surrounded by Higgs particles. They're interacting with the Higgs field.

If that picture's true, then we have to discover those Higgs particles at the LHC. If it's not true—because it's quite a convoluted mechanism, although it's the simplest we've been able to think of—then whatever does the job of the Higgs particles we know have to turn up at the LHC. So, that's one of the prime reasons we built this giant machine. I'm glad you recognize Margaret Thatcher. Actually, I thought about making it more culturally relevant, but—anyway. So that's one thing. That's essentially a guarantee of what the LHC will find.

There are many other things. You've heard many of the big problems in particle physics. One of them you heard about: dark matter, dark energy. There's another issue, which is that the forces in nature—it's quite beautiful, actually—seem, as you go back in time, they seem to change in strength. Well, they do change in strength. So, the electromagnetic force, the force that holds us together, gets stronger as you go to higher temperatures. The strong force, the strong nuclear force, which sticks nuclei together, gets weaker. And what you see is the standard model—you can calculate how these change—is the forces, the three forces, other than gravity, almost seem to come together at one point. It's almost as if there was one beautiful kind of super-force, back at the beginning of time. But they just miss.

Now there's a theory called super-symmetry, which doubles the number of particles in the standard model, which, at first sight, doesn't sound like a simplification. But actually, with this theory, we find that the forces of nature do seem to unify together, back at the Big Bang—absolutely beautiful prophecy. The model wasn't built to do that, but it seems to do it. Also, those super-symmetric particles are very strong candidates for the dark matter. So a very compelling theory that's really mainstream physics. And if I was to put money on it, I would put money on—in a very unscientific way—that that these things would also crop up at the LHC. Many other things that the LHC could discover.

But in the last few minutes, I just want to give you a different perspective of what I think—what particle physics really means to me—particle physics and cosmology. And that's that I think it's given us a wonderful narrative—almost a creation story, if you'd like—about the universe, from modern science over the last few decades. And I'd say that it deserves, in the spirit of Wade Davis' talk, to be at least put up there with these wonderful creation stories of the peoples of the high Andes and the frozen north. This is a creation story, I think, equally as wonderful.

The story goes like this: we know that the universe began 13.7 billion years ago, in an immensely hot, dense state, much smaller than a single atom. It began to expand about a million, billion, billion, billion billionth of a second—I think I got that right—after the Big Bang. Gravity separated away from the other forces. The universe then underwent an exponential expansion called inflation. In about the first billionth of a second or so, the Higgs field kicked in, and the quarks and the gluons and the electrons that make us up got mass. The universe continued to expand and cool. After about a few minutes, there was hydrogen and helium in the universe. That's all. The universe was about 75 percent hydrogen, 25 percent helium. It still is today.

It continued to expand about 300 million years. Then light began to travel through the universe. It was big enough to be transparent to light, and that's what we see in the cosmic microwave background that George Smoot described as looking at the face of God. After about 400 million years, the first stars formed, and that hydrogen, that helium, then began to cook into the heavier elements. So the elements of life—carbon, and oxygen and iron, all the elements that we need to make us up—were cooked in those first generations of stars, which then ran out of fuel, exploded, threw those elements back into the universe. They then re-collapsed into another generation of stars and planets.

And on some of those planets, the oxygen, which had been created in that first generation of stars, could fuse with hydrogen to form water, liquid water on the surface. On at least one, and maybe only one of those planets, primitive life evolved, which evolved over millions of years into things that walked upright and left footprints about three and a half million years ago in the mud flats of Tanzania, and eventually left a footprint on another world. And built this civilization, this wonderful picture, that turned the darkness into light, and you can see the civilization from space. As one of my great heroes, Carl Sagan, said, these are the things—and actually, not only these, but I was looking around—these are the things, like Saturn V rockets, and Sputnik, and DNA, and literature and science—these are the things that hydrogen atoms do when given 13.7 billion years.

Absolutely remarkable. And, the laws of physics. Right? So, the right laws of physics—they're beautifully balanced. If the weak force had been a little bit different, then carbon and oxygen wouldn't be stable inside the hearts of stars, and there would be none of that in the universe. And I think that's a wonderful and significant story. 50 years ago, I couldn't have told that story, because we didn't know it. It makes me really feel that that civilization—which, as I say, if you believe the scientific creation story, has emerged purely as a result of the laws of physics, and a few hydrogen atoms—then I think, to me anyway, it makes me feel incredibly valuable.

So that's the LHC. The LHC is certainly, when it turns on in summer, going to write the next chapter of that book. And I'm certainly looking forward with immense excitement to it being turned on. Thanks.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!