使用chrome瀏覽器,輕鬆學英文。

如有任何問題,歡迎聯絡我們

希平方
攻其不背
App 開放下載中
希平方
攻其不背
App 開放下載中
免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!

「Barbara Block:一窺深海鮪魚生活」- Tagging Tuna in the Deep Ocean


框選或點兩下字幕可以直接查字典喔!

I've been fascinated for a lifetime by the beauty, form and function of giant bluefin tuna. Bluefin are warm-blooded like us. They're the largest of the tunas, the second-largest fish in the sea—bony fish. They actually are a fish that is endothermic—powers through the ocean with warm muscles like a mammal. That's one of our bluefin at the Monterey Bay Aquarium. You can see in its shape and its streamlined design it's powered for ocean swimming. It flies through the ocean on its pectoral fins, gets lift, powers its movements with a lunate tail. It's actually got a naked skin for most of its body, so it reduces friction with the water. This is what one of nature's finest machines.

Now, bluefin were revered by Man for all of human history. For 4,000 years, we fished sustainably for this animal, and it's evidenced in the art that we see from thousands of years ago. Bluefin are in cave paintings in France. They're in coins that date back 3,000 years. This fish was revered by humankind. It was fished sustainably till all of time, except for our generation. Bluefin are pursued wherever they go—there is a gold rush on Earth, and this is a gold rush for bluefin. There are traps that fish sustainably up until recently. And yet, the type of fishing going on today, with pens, with enormous stakes, is really wiping bluefin ecologically off the planet. Now bluefin, in general, goes to one place: Japan. Some of you may be guilty of having contributed to the demise of bluefin. Their delectable muscle, rich in fat—absolutely tastes delicious. And that's their problem; we're eating them to death. Now in the Atlantic, the story is pretty simple. Bluefin have two populations: one large, one small. The North American population is fished at about 2,000 ton. The European population and North African—the Eastern bluefin tuna—is fished at tremendous levels: 50,000 tons over the last decade almost every year.

The result is whether you're looking at the West or the Eastern bluefin population, there's been tremendous decline on both sides, as much as 90 percent if you go back with your baseline to 1950. For that, bluefin have been given a status equivalent to tigers, to lions, to certain African elephants and to pandas. These fish have been proposed for an endangered species listing in the past two months. They were voted on and rejected just two weeks ago, despite outstanding science that shows from two committees this fish meets the criteria of CITES I. And if it's tunas you don't care about, perhaps you might be interested that international long lines and pursings chase down tunas and bycatch animals such as leatherbacks, sharks, marlin, albatross. These animals and their demise occurs in the tuna fisheries. The challenge we face is that we know very little about tuna. Everyone in the room knows what it looks like when an African lion takes down its prey. I doubt anyone has seen a giant bluefin feed. This tuna symbolizes what's the problem for all of us in the room.

It's the 21st century, but we really have only just begun to really study our oceans in a deep way. Technology has come of age that's allowing us to see the Earth from space and go deep into the seas remotely. And we've got to use these technologies immediately to get a better understanding of how our ocean realm works. Most of us from the ship—even I—look out at the ocean and see this homogeneous sea. We don't know where the structure is. We can't tell where are the watering holes like we can on an African plain. We can't see the corridors, and we can't see what it is that brings together a tuna, a leatherback and an albatross. We're only just beginning to understand how the physical oceanography and the biological oceanography come together to create a seasonal force that actually causes the upwelling that might make a hot spot a hope spot. The reasons these challenges are great is that technically it's difficult to go to sea. It's hard to study a bluefin on its turf, the entire Pacific realm. It's really tough to get up close and personal with a mako shark and try to put a tag on it. And then imagine being Bruce Mate's team from OSU, getting up close to a blue whale and fixing a tag on the blue whale that stays, an engineering challenge we've yet to really overcome.

So the story of our team, a dedicated team, is fish and chips. We basically are taking the same satellite phone parts, or the same parts that are in your computer, chips. We're putting them together in unusual ways, and this is taking us into the ocean realm like never before. And for the first time, we're able to watch the journey of a tuna beneath the ocean using light and photons to measure sunrise and sunset. Now, I've been working with tunas for over 15 years. I have the privilege of being a partner with the Monterey Bay Aquarium. We've actually taken a sliver of the ocean, put it behind glass, and we together have put bluefin tuna and yellowfin tuna on display. When the veil of bubbles lifts every morning, we can actually see a community from the Pelagic ocean, one of the only places on Earth you can see giant bluefin swim by. We can see in their beauty of form and function, their ceaseless activity. They're flying through their space, ocean space. And we can bring two million people a year into contact with this fish and show them its beauty.

Behind the scenes is a working lab at Stanford University partnered with the Monterey Bay Aquarium. Here, for over 14 or 15 years, we've actually brought in both bluefin and yellowfin in captivity. We'd been studying these fish, but first we had to learn how to husbandry them. What do they like to eat? What is it that they're happy with? We go in the tanks with the tuna—we touch their naked skin—it's pretty amazing. It feels wonderful. And then, better yet, we've got our own version of tuna whisperers, our own Chuck Farwell, Alex Norton, who can take a big tuna and in one motion, put it into an envelope of water, so that we can actually work with the tuna and learn the techniques it takes to not injure this fish who never sees a boundary in the open sea. Jeff and Jason there, are scientists who are going to take a tuna and put it in the equivalent of a treadmill, a flume. And that tuna thinks it's going to Japan, but it's staying in place. We're actually measuring its oxygen consumption, its energy consumption. We're taking this data and building better models. And when I see that tuna—this is my favorite view—I begin to wonder: how did this fish solve the longitude problem before we did? So take a look at that animal. That's the closest you'll probably ever get. Now, the activities from the lab have taught us now how to go out in the open ocean.

So in a program called Tag-A-Giant, we've actually gone from Ireland to Canada, from Corsica to Spain. We've fished with many nations around the world in an effort to basically put electronic computers inside giant tunas. We've actually tagged 1,100 tunas. And I'm going to show you three clips, because I tagged 1,100 tunas. It's a very hard process, but it's a ballet. We bring the tuna out, we measure it. A team of fishers, captains, scientists and technicians work together to keep this animal out of the ocean for about four to five minutes. We put water over its gills, give it oxygen. And then with a lot of effort, after tagging, putting in the computer, making sure the stalk is sticking out so it senses the environment, we send this fish back into the sea. And when it goes, we're always happy. We see a flick of the tail. And from our data that gets collected, when that tag comes back, because a fisher returns it for a thousand-dollar reward, we can get tracks beneath the sea for up to five years now, on a backboned animal.

Now sometimes the tunas are really large, such as this fish off Nantucket. But that's about half the size of the biggest tuna we've ever tagged. It takes a human effort, a team effort, to bring the fish in. In this case, what we're going to do is put a pop-up satellite archival tag on the tuna. This tag rides on the tuna, senses the environment around the tuna and actually will come off the fish, detach, float to the surface and send back to Earth-orbiting satellites position data estimated by math on the tag, pressure data and temperature data. And so what we get then from the pop-up satellite tag is we get away from having to have a human interaction to recapture the tag. Both the electronic tags I'm talking about are expensive. These tags have been engineered by a variety of teams in North America. They are some of our finest instruments, our new technology, in the ocean today. One community in general has given more to help us than any other community. And that's the fisheries off the state of North Carolina. There are two villages, Harris and Morehead City, every winter for over a decade, held a party called Tag-A-Giant, and together, fishers worked with us to tag 800 to 900 fish. In this case, we're actually going to measure the fish. We're going to do something that in recent years we've started: take a mucus sample. Watch how shiny the skin is; you can see my reflection there. And from that mucus, we can get gene profiles, we can get information on gender, checking the pop-up tag one more time, and then it's out in the ocean. And this is my favorite.

With the help of my former postdoc, Gareth Lawson, this is a gorgeous picture of a single tuna. This tuna is actually moving on a numerical ocean. The warm is the Gulf Stream, the cold up there in the Gulf of Maine. That's where the tuna wants to go—it wants to forage on schools of herring—but it can't get there. It's too cold. But then it warms up, and the tuna pops in, gets some fish, maybe comes back to home base, goes in again and then comes back to winter down there in North Carolina and then on to the Bahamas. And my favorite scene, three tunas going into the Gulf of Mexico. Three tunas tagged. Astronomically, we're calculating positions. They're coming together. That could be tuna sex—and there it is. That is where the tuna spawn. So from data like this, we're able now to put the map up, and in this map you see thousands of positions generated by this decade and a half of tagging. And now we're showing that tunas on the western side go to the eastern side. So two populations of tunas—that is, we have a Gulf population, one that we can tag—they go to the Gulf of Mexico, I showed you that—and a second population. Living amongst our tunas—our North American tunas—are European tunas that go back to the Med. On the hot spots—the hope spots—they're mixed populations.

And so what we've done with the science is we're showing the International Commission, building new models, showing them that a two-stock no-mixing model—to this day, used to reject the CITES treaty—that model isn't the right model. This model, a model of overlap, is the way to move forward. So we can then predict where management places should be. Places like the Gulf of Mexico and the Mediterranean are places where the single species, the single population, can be captured. These become forthright in places we need to protect. The center of the Atlantic where the mixing is, I could imagine a policy that lets Canada and America fish, because they manage their fisheries well, they're doing a good job. But in the international realm, where fishing and overfishing has really gone wild, these are the places that we have to make hope spots in. That's the size they have to be to protect the bluefin tuna.

Now in a second project called Tagging of Pacific Pelagics, we took on the planet as a team, those of us in the Census of Marine Life. And, funded primarily through Sloan Foundation and others, we were able to actually go in, in our project—we're one of 17 field programs—and begin to take on tagging large numbers of predators, not just tunas. So what we've done is actually gone up to tag salmon shark in Alaska, met salmon shark on their home territory, followed them catching salmon and then went in and figured out that, if we take a salmon and put it on a line, we can actually take up a salmon shark—This is the cousin of the white shark—and very carefully—note, I say "very carefully,"—we can actually keep it calm, put a hose in its mouth, keep it off the deck and then tag it with a satellite tag. That satellite tag will now have your shark phone home and send in a message. And that shark leaping there, if you look carefully, has an antenna. It's a free swimming shark with a satellite tag jumping after salmon, sending home its data. Salmon sharks aren't the only sharks we tag. But there goes salmon sharks with this meter-level resolution on an ocean of temperature—warm colors are warmer. Salmon sharks go down to the tropics to pup and come into Monterey.

Now right next door in Monterey and up at the Farallones are a white shark team led by Scott Anderson—there—and Sal Jorgensen. They can throw out a target—it's a carpet shaped like a seal—and in will come a white shark, a curious critter that will come right up to our 16-foot boat. It's a several thousand-pound animal. And we'll wind in the target. And we'll place an acoustic tag that says, "OMSHARK 10165," or something like that, acoustically with a ping. And then we'll put on a satellite tag that will give us the long-distance journeys with the light-based geolocation algorithms solved on the computer that's on the fish. So in this case, Sal's looking at two tags there, and there they are: the white sharks of California going off to the white shark cafe and coming back. We also tag makos with our NOAA colleagues, blue sharks. And now, together, what we can see on this ocean of color that's temperature, we can see ten-day worms of makos and salmon sharks. We have white sharks and blue sharks. For the first time, an ecoscape as large as ocean-scale, showing where the sharks go.

The tuna team from TOPP has done the unthinkable: three teams tagged 1,700 tunas, bluefin, yellowfin and albacore all at the same time—carefully rehearsed tagging programs in which we go out, pick up juvenile tunas, put in the tags that actually have the sensors, stick out the tuna and then let them go. They get returned, and when they get returned, here on a NASA numerical ocean you can see bluefin in blue go across their corridor, returning to the Western Pacific.

Our team from UCSC has tagged elephant seals with tags that are glued on their heads, that come off when they slough. These elephant seals cover half an ocean, take data down to 1,800 feet—amazing data. And then there's Scott Shaffer and our shearwaters wearing tuna tags, light-based tags, that now are going to take you from New Zealand to Monterey and back, journeys of 35,000 nautical miles we had never seen before. But now with light-based geolocation tags that are very small, we can actually see these journeys. Same thing with Laysan albatross who travel an entire ocean on a trip sometimes, up to the same zone the tunas use. You can see why they might be caught. Then there's George Schillinger and our leatherback team out of Playa Grande tagging leatherbacks that go right past where we are. And Scott Benson's team that showed that leatherbacks go from Indonesia all the way to Monterey. So what we can see on this moving ocean is we can finally see where the predators are. We can actually see how they're using ecospaces as large as an ocean.

And from this information, we can begin to map the hope spots. All right? So this is just three years of data right here—and there's a decade of this data. We see the pulse and the seasonal activities that these animals are going on. So what we're able to do with this information is boil it down to hot spots, 4,000 deployments, a huge herculean task, 2,000 tags, in an area shown here for the first time, off the California coast, that appears to be a gathering place. And then for sort of an encore from these animals, they're helping us. They're carrying instruments that are actually taking data down to 2,000 meters. They're taking information from our planet at very critical places like Antarctica and the Poles. Those are seals from many countries being released who are sampling underneath the ice sheets and giving us temperature data of oceanographic quality on both poles.

This data, when visualized, is captivating to watch. We still haven't figured out best how to visualize the data. And then, as these animals swim and give us the information that's important to climate issues, we also think it's critical to get this information to the public, to engage the public with this kind of data. We did this with the Great Turtle Race—tagged turtles, brought in four million hits. And now with Google's Oceans, we can actually put a white shark in that ocean. And when we do and it swims, we see this magnificent bathymetry that the shark knows is there on its path as it goes from California to Hawaii. But maybe Mission Blue can fill in that ocean that we can't see. We've got the capacity, NASA has the ocean. We just need to put it together.

So in conclusion, we know where Yellowstone is for North America; it's off our coast. We have the technology that's shown us where it is. What we need to think about perhaps for Mission Blue is increasing the biologging capacity. How is it that we can actually take this type of activity elsewhere? And then finally—to basically get the message home—maybe use live links from animals such as blue whales and white sharks. Make killer apps, if you will. A lot of people are excited when sharks actually went under the Golden Gate Bridge. Let's connect the public to this activity right on their iPhone. That way we do away with a few internet myths.

So we can save the bluefin tuna. We can save the white shark. We have the science and technology. Hope is here. Yes we can. We need just to apply this capacity further in the oceans.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!