下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Richard Dawkins:為何宇宙看起來如此奇異」- Why the Universe Seems So Strange

觀看次數:2823  • 

框選或點兩下字幕可以直接查字典喔!

My title: "Queerer than we can suppose: The strangeness of science." "Queerer than we can suppose" comes from J.B.S. Haldane, the famous biologist, who said, "Now, my own suspicion is that the universe is not only queerer than we suppose, but queerer than we can suppose. I suspect that there are more things in heaven and earth than are dreamed of, or can be dreamed of, in any philosophy." Richard Feynman compared the accuracy of quantum theories—experimental predictions—to specifying the width of North America to within one hair's breadth of accuracy. This means that quantum theory has got to be in some sense true. Yet the assumptions that quantum theory needs to make in order to deliver those predictions are so mysterious that even Feynman himself was moved to remark, "If you think you understand quantum theory, you don't understand quantum theory."

It's so queer that physicists resort to one or another paradoxical interpretation of it. David Deutsch, who's talking here, in "The Fabric of Reality," embraces the "many worlds" interpretation of quantum theory, because the worst that you can say about it is that it's preposterously wasteful. It postulates a vast and rapidly growing number of universes existing in parallel—mutually undetectable except through the narrow porthole of quantum mechanical experiments. And that's Richard Feynman.

The biologist Lewis Wolpert believes that the queerness of modern physics is just an extreme example. Science, as opposed to technology, does violence to common sense. Every time you drink a glass of water, he points out, the odds are that you will imbibe at least one molecule that passed through the bladder of Oliver Cromwell. It's just elementary probability theory. The number of molecules per glassful is hugely greater than the number of glassfuls, or bladdersful, in the world—and, of course, there's nothing special about Cromwell or bladders. You have just breathed in a nitrogen atom that passed through the right lung of the third iguanodon to the left of the tall cycad tree.

"Queerer than we can suppose." What is it that makes us capable of supposing anything, and does this tell us anything about what we can suppose? Are there things about the universe that will be forever beyond our grasp, but not beyond the grasp of some superior intelligence? Are there things about the universe that are, in principle, ungraspable by any mind, however superior? The history of science has been one long series of violent brainstorms, as successive generations have come to terms with increasing levels of queerness in the universe. We're now so used to the idea that the Earth spins—rather than the Sun moves across the sky—it's hard for us to realize what a shattering mental revolution that must have been. After all, it seems obvious that the Earth is large and motionless, the Sun small and mobile. But it's worth recalling Wittgenstein's remark on the subject. "Tell me," he asked a friend, "why do people always say, it was natural for man to assume that the sun went round the earth rather than that the earth was rotating?" His friend replied, "Well, obviously because it just looks as though the Sun is going round the Earth." Wittgenstein replied, "Well, what would it have looked like if it had looked as though the Earth was rotating?"

Science has taught us, against all intuition, that apparently solid things, like crystals and rocks, are really almost entirely composed of empty space. And the familiar illustration is the nucleus of an atom is a fly in the middle of a sports stadium and the next atom is in the next sports stadium. So it would seem the hardest, solidest, densest rock is really almost entirely empty space, broken only by tiny particles so widely spaced they shouldn't count. Why, then, do rocks look and feel solid and hard and impenetrable? As an evolutionary biologist, I'd say this: our brains have evolved to help us survive within the orders of magnitude of size and speed which our bodies operate at. We never evolved to navigate in the world of atoms. If we had, our brains probably would perceive rocks as full of empty space. Rocks feel hard and impenetrable to our hands precisely because objects like rocks and hands cannot penetrate each other. It's therefore useful for our brains to construct notions like "solidity" and "impenetrability," because such notions help us to navigate our bodies through the middle-sized world in which we have to navigate.

Moving to the other end of the scale, our ancestors never had to navigate through the cosmos at speeds close to the speed of light. If they had, our brains would be much better at understanding Einstein. I want to give the name "Middle World" to the medium-scaled environment in which we've evolved the ability to take act—nothing to do with Middle Earth. Middle World. We are evolved denizens of Middle World, and that limits what we are capable of imagining. We find it intuitively easy to grasp ideas like, when a rabbit moves at the sort of medium velocity at which rabbits and other Middle World objects move, and hits another Middle World object, like a rock, it knocks itself out.

May I introduce Major General Albert Stubblebine III, commander of military intelligence in 1983. He stared at his wall in Arlington, Virginia, and decided to do it. As frightening as the prospect was, he was going into the next office. He stood up, and moved out from behind his desk. What is the atom mostly made of? he thought. Space. He started walking. What am I mostly made of? Atoms. He quickened his pace, almost to a jog now. What is the wall mostly made of? Atoms. All I have to do is merge the spaces. Then, General Stubblebine banged his nose hard on the wall of his office. Stubblebine, who commanded 16,000 soldiers, was confounded by his continual failure to walk through the wall. He has no doubt that this ability will, one day, be a common tool in the military arsenal. Who would screw around with an army that could do that? That's from an article in Playboy, which I was reading the other day.

I have every reason to think it's true; I was reading Playboy because I, myself, had an article in it. Unaided human intuition schooled in Middle World finds it hard to believe Galileo when he tells us a heavy object and a light object, air friction aside, would hit the ground at the same instant. And that's because in Middle World, air friction is always there. If we'd evolved in a vacuum, we would expect them to hit the ground simultaneously. If we were bacteria, constantly buffeted by thermal movements of molecules, it would be different, but we Middle Worlders are too big to notice Brownian motion. In the same way, our lives are dominated by gravity but are almost oblivious to the force of surface tension. A small insect would reverse these priorities.

Steve Grand—he's the one on the left, Douglas Adams is on the right—Steve Grand, in his book, "Creation: Life and How to Make It," is positively scathing about our preoccupation with matter itself. We have this tendency to think that only solid, material things are really things at all. Waves of electromagnetic fluctuation in a vacuum seem unreal. Victorians thought the waves had to be waves in some material medium: the ether. But we find real matter comforting only because we've evolved to survive in Middle World, where matter is a useful fiction. A whirlpool, for Steve Grand, is a thing with just as much reality as a rock.

In a desert plain in Tanzania, in the shadow of the volcano Ol Donyo Lengai, there's a dune made of volcanic ash. The beautiful thing is that it moves bodily. It's what's technically known as a "barchan," and the entire dune walks across the desert in a westerly direction at a speed of about 17 meters per year. It retains its crescent shape and moves in the direction of the horns. What happens is that the wind blows the sand up the shallow slope on the other side, and then, as each sand grain hits the top of the ridge, it cascades down on the inside of the crescent, and so the whole horn-shaped dune moves. Steve Grand points out that you and I are, ourselves, more like a wave than a permanent thing. He invites us, the reader, to "think of an experience from your childhood—something you remember clearly, something you can see, feel, maybe even smell, as if you were really there. After all, you really were there at the time, weren't you? How else would you remember it? But here is the bombshell: You weren't there. Not a single atom that is in your body today was there when that event took place. Matter flows from place to place and momentarily comes together to be you. Whatever you are, therefore, you are not the stuff of which you are made. If that doesn't make the hair stand up on the back of your neck, read it again until it does, because it is important."

So "really" isn't a word that we should use with simple confidence. If a neutrino had a brain, which it evolved in neutrino-sized ancestors, it would say that rocks really do consist of empty space. We have brains that evolved in medium-sized ancestors which couldn't walk through rocks. "Really," for an animal, is whatever its brain needs it to be in order to assist its survival, and because different species live in different worlds, there will be a discomforting variety of "really"s. What we see of the real world is not the unvarnished world but a model of the world, regulated and adjusted by sense data, but constructed so it's useful for dealing with the real world.

The nature of the model depends on the kind of animal we are. A flying animal needs a different kind of model from a walking, climbing or swimming animal. A monkey's brain must have software capable of simulating a three-dimensional world of branches and trunks. A mole's software for constructing models of its world will be customized for underground use. A water strider's brain doesn't need 3D software at all, since it lives on the surface of the pond in an Edwin Abbott flatland.

I've speculated that bats may see color with their ears. The world model that a bat needs in order to navigate through three dimensions catching insects must be pretty similar to the world model that any flying bird, a day-flying bird like a swallow, needs to perform the same kind of tasks. The fact that the bat uses echoes in pitch darkness to input the current variables to its model, while the swallow uses light, is incidental. Bats, I've even suggested, use perceived hues, such as red and blue, as labels, internal labels, for some useful aspect of echoes—perhaps the acoustic texture of surfaces, furry or smooth and so on, in the same way as swallows or, indeed, we, use those perceived hues—redness and blueness etc.—to label long and short wavelengths of light. There's nothing inherent about red that makes it long wavelength.

And the point is that the nature of the model is governed by how it is to be used, rather than by the sensory modality involved. J. B .S. Haldane himself had something to say about animals whose world is dominated by smell. Dogs can distinguish two very similar fatty acids, extremely diluted: caprylic acid and caproic acid. The only difference, you see, is that one has an extra pair of carbon atoms in the chain. Haldane guesses that a dog would probably be able to place the acids in the order of their molecular weights by their smells, just as a man could place a number of piano wires in the order of their lengths by means of their notes. Now, there's another fatty acid, capric acid, which is just like the other two, except that it has two more carbon atoms. A dog that had never met capric acid would, perhaps, have no more trouble imagining its smell than we would have trouble imagining a trumpet, say, playing one note higher than we've heard a trumpet play before. Perhaps dogs and rhinos and other smell-oriented animals smell in color. And the argument would be exactly the same as for the bats.

Middle World—the range of sizes and speeds which we have evolved to feel intuitively comfortable with—is a bit like the narrow range of the electromagnetic spectrum that we see as light of various colors. We're blind to all frequencies outside that, unless we use instruments to help us. Middle World is the narrow range of reality which we judge to be normal, as opposed to the queerness of the very small, the very large and the very fast. We could make a similar scale of improbabilities; nothing is totally impossible. Miracles are just events that are extremely improbable. A marble statue could wave its hand at us; the atoms that make up its crystalline structure are all vibrating back and forth anyway. Because there are so many of them, and because there's no agreement among them in their preferred direction of movement, the marble, as we see it in Middle World, stays rock steady. But the atoms in the hand could all just happen to move the same way at the same time, and again and again. In this case, the hand would move and we'd see it waving at us in Middle World. The odds against it, of course, are so great that if you set out writing zeros at the time of the origin of the universe, you still would not have written enough zeros to this day.

Evolution in Middle World has not equipped us to handle very improbable events; we don't live long enough. In the vastness of astronomical space and geological time, that which seems impossible in Middle World might turn out to be inevitable. One way to think about that is by counting planets. We don't know how many planets there are in the universe, but a good estimate is about 10 to the 20, or 100 billion billion. And that gives us a nice way to express our estimate of life's improbability. Could make some sort of landmark points along a spectrum of improbability, which might look like the electromagnetic spectrum we just looked at.

If life has arisen only once on any—if—if life could—I mean, life could originate once per planet, could be extremely common, or it could originate once per star, or once per galaxy or maybe only once in the entire universe, in which case it would have to be here. And somewhere up there would be the chance that a frog would turn into a prince and similar magical things like that. If life has arisen on only one planet in the entire universe, that planet has to be our planet, because here we are talking about it. And that means that if we want to avail ourselves of it, we're allowed to postulate chemical events in the origin of life which have a probability as low as one in 100 billion billion. I don't think we shall have to avail ourselves of that, because I suspect that life is quite common in the universe. And when I say quite common, it could still be so rare that no one island of life ever encounters another, which is a sad thought.

How shall we interpret "queerer than we can suppose?" Queerer than can in principle be supposed, or just queerer than we can suppose, given the limitations of our brain's evolutionary apprenticeship in Middle World? Could we, by training and practice, emancipate ourselves from Middle World and achieve some sort of intuitive, as well as mathematical, understanding of the very small and the very large? I genuinely don't know the answer. I wonder whether we might help ourselves to understand, say, quantum theory, if we brought up children to play computer games, beginning in early childhood, which had a sort of make-believe world of balls going through two slits on a screen, a world in which the strange goings on of quantum mechanics were enlarged by the computer's make-believe, so that they became familiar on the Middle-World scale of the stream. And, similarly, a relativistic computer game in which objects on the screen manifest the Lorenz Contraction, and so on, to try to get ourselves into the way of thinking—get children into the way of thinking about it.

I want to end by applying the idea of Middle World to our perceptions of each other. Most scientists today subscribe to a mechanistic view of the mind: we're the way we are because our brains are wired up as they are; our hormones are the way they are. We'd be different, our characters would be different, if our neuro-anatomy and our physiological chemistry were different. But we scientists are inconsistent. If we were consistent, our response to a misbehaving person, like a child-murderer, should be something like, this unit has a faulty component; it needs repairing. That's not what we say. What we say—and I include the most austerely mechanistic among us, which is probably me—what we say is, "Vile monster, prison is too good for you." Or worse, we seek revenge, in all probability thereby triggering the next phase in an escalating cycle of counter-revenge, which we see, of course, all over the world today. In short, when we're thinking like academics, we regard people as elaborate and complicated machines, like computers or cars, but when we revert to being human we behave more like Basil Fawlty, who, we remember, thrashed his car to teach it a lesson when it wouldn't start on gourmet night.

The reason we personify things like cars and computers is that just as monkeys live in an arboreal world and moles live in an underground world and water striders live in a surface tension-dominated flatland, we live in a social world. We swim through a sea of people—a social version of Middle World. We are evolved to second-guess the behavior of others by becoming brilliant, intuitive psychologists. Treating people as machines may be scientifically and philosophically accurate, but it's a cumbersome waste of time if you want to guess what this person is going to do next. The economically useful way to model a person is to treat him as a purposeful, goal-seeking agent with pleasures and pains, desires and intentions, guilt, blame-worthiness. Personification and the imputing of intentional purpose is such a brilliantly successful way to model humans, it's hardly surprising the same modeling software often seizes control when we're trying to think about entities for which it's not appropriate, like Basil Fawlty with his car or like millions of deluded people with the universe as a whole.

If the universe is queerer than we can suppose, is it just because we've been naturally selected to suppose only what we needed to suppose in order to survive in the Pleistocene of Africa? Or are our brains so versatile and expandable that we can train ourselves to break out of the box of our evolution? Or, finally, are there some things in the universe so queer that no philosophy of beings, however godlike, could dream them? Thank you very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!