下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Suzanne Simard:樹木如何對話」- How Trees Talk to Each Other

觀看次數:2755  • 

框選或點兩下字幕可以直接查字典喔!

Imagine you're walking through a forest. I'm guessing you're thinking of a collection of trees, what we foresters call a stand, with their rugged stems and their beautiful crowns. Yes, trees are the foundation of forests, but a forest is much more than what you see, and today I want to change the way you think about forests. You see, underground there is this other world, a world of infinite biological pathways that connect trees and allow them to communicate and allow the forest to behave as though it's a single organism. It might remind you of a sort of intelligence.

How do I know this? Here's my story. I grew up in the forests of British Columbia. I used to lay on the forest floor and stare up at the tree crowns. They were giants. My grandfather was a giant, too. He was a horse logger, and he used to selectively cut cedar poles from the inland rainforest. Grandpa taught me about the quiet and cohesive ways of the woods, and how my family was knit into it. So I followed in grandpa's footsteps.

He and I had this curiosity about forests, and my first big "aha" moment was at the outhouse by our lake. Our poor dog Jigs had slipped and fallen into the pit. So grandpa ran up with his shovel to rescue the poor dog. He was down there, swimming in the muck. But as grandpa dug through that forest floor, I became fascinated with the roots, and under that, what I learned later was the white mycelium and under that the red and yellow mineral horizons. Eventually, grandpa and I rescued the poor dog, but it was at that moment that I realized that that palette of roots and soil was really the foundation of the forest.

And I wanted to know more. So I studied forestry. But soon I found myself working alongside the powerful people in charge of the commercial harvest. The extent of the clear-cutting was alarming, and I soon found myself conflicted by my part in it. Not only that, the spraying and hacking of the aspens and birches to make way for the more commercially valuable planted pines and firs was astounding. It seemed that nothing could stop this relentless industrial machine.

So I went back to school, and I studied my other world. You see, scientists had just discovered in the laboratory in vitro that one pine seedling root could transmit carbon to another pine seedling root. But this was in the laboratory, and I wondered, could this happen in real forests? I thought yes. Trees in real forests might also share information below ground. But this was really controversial, and some people thought I was crazy, and I had a really hard time getting research funding. But I persevered, and I eventually conducted some experiments deep in the forest, 25 years ago. I grew 80 replicates of three species: paper birch, Douglas fir, and western red cedar. I figured the birch and the fir would be connected in a belowground web, but not the cedar. It was in its own other world. And I gathered my apparatus, and I had no money, so I had to do it on the cheap. So I went to Canadian Tire --

and I bought some plastic bags and duct tape and shade cloth, a timer, a paper suit, a respirator. And then I borrowed some high-tech stuff from my university: a Geiger counter, a scintillation counter, a mass spectrometer, microscopes. And then I got some really dangerous stuff: syringes full of radioactive carbon-14 carbon dioxide gas and some high pressure bottles of the stable isotope carbon-13 carbon dioxide gas. But I was legally permitted.

Oh, and I forgot some stuff, important stuff: the bug spray, the bear spray, the filters for my respirator. Oh well.

The first day of the experiment, we got out to our plot and a grizzly bear and her cub chased us off. And I had no bear spray. But you know, this is how forest research in Canada goes.

So I came back the next day, and mama grizzly and her cub were gone. So this time, we really got started, and I pulled on my white paper suit, I put on my respirator, and then I put the plastic bags over my trees. I got my giant syringes, and I injected the bags with my tracer isotope carbon dioxide gases, first the birch. I injected carbon-14, the radioactive gas, into the bag of birch. And then for fir, I injected the stable isotope carbon-13 carbon dioxide gas. I used two isotopes, because I was wondering whether there was two-way communication going on between these species. I got to the final bag, the 80th replicate, and all of a sudden mama grizzly showed up again. And she started to chase me, and I had my syringes above my head, and I was swatting the mosquitoes, and I jumped into the truck, and I thought, "This is why people do lab studies."

I waited an hour. I figured it would take this long for the trees to suck up the CO2 through photosynthesis, turn it into sugars, send it down into their roots, and maybe, I hypothesized, shuttle that carbon belowground to their neighbors. After the hour was up, I rolled down my window, and I checked for mama grizzly. Oh good, she's over there eating her huckleberries. So I got out of the truck and I got to work. I went to my first bag with the birch. I pulled the bag off. I ran my Geiger counter over its leaves. Kkhh! Perfect. The birch had taken up the radioactive gas. Then the moment of truth. I went over to the fir tree. I pulled off its bag. I ran the Geiger counter up its needles, and I heard the most beautiful sound. Kkhh! It was the sound of birch talking to fir, and birch was saying, "Hey, can I help you?" And fir was saying, "Yeah, can you send me some of your carbon? Because somebody threw a shade cloth over me." I went up to cedar, and I ran the Geiger counter over its leaves, and as I suspected, silence. Cedar was in its own world. It was not connected into the web interlinking birch and fir.

I was so excited, I ran from plot to plot and I checked all 80 replicates. The evidence was clear. The C-13 and C-14 was showing me that paper birch and Douglas fir were in a lively two-way conversation. It turns out at that time of the year, in the summer, that birch was sending more carbon to fir than fir was sending back to birch, especially when the fir was shaded. And then in later experiments, we found the opposite, that fir was sending more carbon to birch than birch was sending to fir, and this was because the fir was still growing while the birch was leafless. So it turns out the two species were interdependent, like yin and yang.

And at that moment, everything came into focus for me. I knew I had found something big, something that would change the way we look at how trees interact in forests, from not just competitors but to cooperators. And I had found solid evidence of this massive belowground communications network, the other world.

Now, I truly hoped and believed that my discovery would change how we practice forestry, from clear-cutting and herbiciding to more holistic and sustainable methods, methods that were less expensive and more practical. What was I thinking? I'll come back to that.

So how do we do science in complex systems like forests? Well, as forest scientists, we have to do our research in the forests, and that's really tough, as I've shown you. And we have to be really good at running from bears. But mostly, we have to persevere in spite of all the stuff stacked against us. And we have to follow our intuition and our experiences and ask really good questions. And then we've got to gather our data and then go verify. For me, I've conducted and published hundreds of experiments in the forest. Some of my oldest experimental plantations are now over 30 years old. You can check them out. That's how forest science works.

So now I want to talk about the science. How were paper birch and Douglas fir communicating? Well, it turns out they were conversing not only in the language of carbon but also nitrogen and phosphorus and water and defense signals and allele chemicals and hormones -- information. And you know, I have to tell you, before me, scientists had thought that this belowground mutualistic symbiosis called a mycorrhiza was involved. Mycorrhiza literally means "fungus root." You see their reproductive organs when you walk through the forest. They're the mushrooms. The mushrooms, though, are just the tip of the iceberg, because coming out of those stems are fungal threads that form a mycelium, and that mycelium infects and colonizes the roots of all the trees and plants. And where the fungal cells interact with the root cells, there's a trade of carbon for nutrients, and that fungus gets those nutrients by growing through the soil and coating every soil particle. The web is so dense that there can be hundreds of kilometers of mycelium under a single footstep. And not only that, that mycelium connects different individuals in the forest, individuals not only of the same species but between species, like birch and fir, and it works kind of like the Internet.

You see, like all networks, mycorrhizal networks have nodes and links. We made this map by examining the short sequences of DNA of every tree and every fungal individual in a patch of Douglas fir forest. In this picture, the circles represent the Douglas fir, or the nodes, and the lines represent the interlinking fungal highways, or the links.

The biggest, darkest nodes are the busiest nodes. We call those hub trees, or more fondly, mother trees, because it turns out that those hub trees nurture their young, the ones growing in the understory. And if you can see those yellow dots, those are the young seedlings that have established within the network of the old mother trees. In a single forest, a mother tree can be connected to hundreds of other trees. And using our isotope tracers, we have found that mother trees will send their excess carbon through the mycorrhizal network to the understory seedlings, and we've associated this with increased seedling survival by four times.

Now, we know we all favor our own children, and I wondered, could Douglas fir recognize its own kin, like mama grizzly and her cub? So we set about an experiment, and we grew mother trees with kin and stranger's seedlings. And it turns out they do recognize their kin. Mother trees colonize their kin with bigger mycorrhizal networks. They send them more carbon below ground. They even reduce their own root competition to make elbow room for their kids. When mother trees are injured or dying, they also send messages of wisdom on to the next generation of seedlings. So we've used isotope tracing to trace carbon moving from an injured mother tree down her trunk into the mycorrhizal network and into her neighboring seedlings, not only carbon but also defense signals. And these two compounds have increased the resistance of those seedlings to future stresses. So trees talk.

Thank you.

Through back and forth conversations, they increase the resilience of the whole community. It probably reminds you of our own social communities, and our families, well, at least some families.

So let's come back to the initial point. Forests aren't simply collections of trees, they're complex systems with hubs and networks that overlap and connect trees and allow them to communicate, and they provide avenues for feedbacks and adaptation, and this makes the forest resilient. That's because there are many hub trees and many overlapping networks. But they're also vulnerable, vulnerable not only to natural disturbances like bark beetles that preferentially attack big old trees but high-grade logging and clear-cut logging. You see, you can take out one or two hub trees, but there comes a tipping point, because hub trees are not unlike rivets in an airplane. You can take out one or two and the plane still flies, but you take out one too many, or maybe that one holding on the wings, and the whole system collapses.

So now how are you thinking about forests? Differently?

Yes.

Cool. I'm glad.

So, remember I said earlier that I hoped that my research, my discoveries would change the way we practice forestry. Well, I want to take a check on that 30 years later here in western Canada.

This is about 100 kilometers to the west of us, just on the border of Banff National Park. That's a lot of clear-cuts. In my estimation, there hasn't been a lot of change in the last 30 years. It's not so pristine. In 2014, the World Resources Institute reported that Canada in the past decade has had the highest forest disturbance rate of any country worldwide, and I bet you thought it was Brazil. In Canada, it's 3.6 percent per year. Now, by my estimation, that's about four times the rate that is sustainable.

Now, massive disturbance at this scale is known to affect hydrological cycles, degrade wildlife habitat, and emit greenhouse gases back into the atmosphere, which creates more disturbance and more tree diebacks.

Not only that, we're continuing to plant one or two species and weed out the aspens and birches. These simplified forests lack complexity, and they're really vulnerable to infections and bugs. And as climate changes, this is creating a perfect storm for extreme events, like the massive mountain pine beetle outbreak that just swept across North America, or that mega fire in the last couple months in Alberta.

So I want to come back to my final question: instead of weakening our forests, how can we reinforce them and help them deal with climate change? Well, you know, the great thing about forests as complex systems is they have enormous capacity to self-heal. In our recent experiments, we found with patch-cutting and retention of hub trees and regeneration to a diversity of species and genes and geno types that these mycorrhizal networks, they recover really rapidly. So with this in mind, I want to leave you with four simple solutions. And we can't kid ourselves that these are too complicated to act on.

First, we all need to get out in the forest. We need to reestablish local involvement in our own forests. You see, most of our forests now are managed using a one-size-fits-all approach, but good forest stewardship requires knowledge of local conditions.

Second, we need to save our old-growth forests. These are the repositories of genes and mother trees and mycorrhizal networks. So this means less cutting. I don't mean no cutting, but less cutting.

And third, when we do cut, we need to save the legacies, the mother trees and networks, and the wood, the genes, so they can pass their wisdom onto the next generation of trees so they can withstand the future stresses coming down the road. We need to be conservationists.

And finally, fourthly and finally, we need to regenerate our forests with a diversity of species and genotypes and structures by planting and allowing natural regeneration. We have to give Mother Nature the tools she needs to use her intelligence to self-heal. And we need to remember that forests aren't just a bunch of trees competing with each other, they're super cooperators.

So back to Jigs. Jigs's fall into the outhouse showed me this other world, and it changed my view of forests. I hope today to have changed how you think about forests.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!