下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Nicholas Christakis:人際網絡的潛在影響」- The Hidden Influence of Social Networks


框選或點兩下字幕可以直接查字典喔!

For me, this story begins about 15 years ago, when I was a hospice doctor at the University of Chicago. And I was taking care of people who were dying and their families in the South Side of Chicago. And I was observing what happened to people and their families over the course of their terminal illness. And in my lab, I was studying the widower effect, which is a very old idea in the social sciences, going back 150 years, known as "dying of a broken heart." So, when I die, my wife's risk of death can double, for instance, in the first year. And I had gone to take care of one particular patient, a woman who was dying of dementia. And in this case, unlike this couple, she was being cared for by her daughter. And the daughter was exhausted from caring for her mother. And the daughter's husband, he also was sick from his wife's exhaustion. And I was driving home one day, and I get a phone call from the husband's friend, calling me because he was depressed about what was happening to his friend. So here I get this call from this random guy that's having an experience that's being influenced by people at some social distance.

And so I suddenly realized two very simple things: First, the widowhood effect was not restricted to husbands and wives. And second, it was not restricted to pairs of people. And I started to see the world in a whole new way, like pairs of people connected to each other. And then I realized that these individuals would be connected into foursomes with other pairs of people nearby. And then, in fact, these people were embedded in other sorts of relationships: marriage and spousal and friendship and other sorts of ties. And that, in fact, these connections were vast and that we were all embedded in this broad set of connections with each other. So I started to see the world in a completely new way and I became obsessed with this. I became obsessed with how it might be that we're embedded in these social networks, and how they affect our lives. So, social networks are these intricate things of beauty, and they're so elaborate and so complex and so ubiquitous, in fact, that one has to ask what purpose they serve. Why are we embedded in social networks? I mean, how do they form? How do they operate? And how do they affect us?

So my first topic with respect to this, was not death, but obesity. It had become trendy to speak about the "obesity epidemic." And, along with my collaborator, James Fowler, we began to wonder whether obesity really was epidemic and could it spread from person to person like the four people I discussed earlier. So this is a slide of some of our initial results. It's 2,200 people in the year 2000. Every dot is a person. We make the dot size proportional to people's body size; so bigger dots are bigger people. In addition, if your body size, if your BMI, your body mass index, is above 30—if you're clinically obese—we also colored the dots yellow. So, if you look at this image, right away you might be able to see that there are clusters of obese and non-obese people in the image. But the visual complexity is still very high. It's not obvious exactly what's going on. In addition, some questions are immediately raised: How much clustering is there? Is there more clustering than would be due to chance alone? How big are the clusters? How far do they reach? And, most importantly, what causes the clusters?

So we did some mathematics to study the size of these clusters. This here shows, on the Y-axis, the increase in the probability that a person is obese given that a social contact of theirs is obese and, on the X-axis, the degrees of separation between the two people. On the far left, you see the purple line. It says that, if your friends are obese, your risk of obesity is 45 percent higher. And the next bar over, the orange line, says if your friend's friends are obese, your risk of obesity is 25 percent higher. And then the next line over says if your friend's friend's friend, someone you probably don't even know, is obese, your risk of obesity is 10 percent higher. And it's only when you get to your friend's friend's friend's friends that there's no longer a relationship between that person's body size and your own body size.

Well, what might be causing this clustering? There are at least three possibilities: One possibility is that, as I gain weight, it causes you to gain weight. A kind of induction, a kind of spread from person to person. Another possibility, very obvious, is homophily, or, birds of a feather flock together; here, I form my tie to you because you and I share a similar body size. And the last possibility is what is known as confounding, because it confounds our ability to figure out what's going on. And here, the idea is not that my weight gain is causing your weight gain, nor that I preferentially form a tie with you because you and I share the same body size, but rather that we share a common exposure to something, like a health club that makes us both lose weight at the same time.

When we studied these data, we found evidence for all of these things, including for induction. And we found that if your friend becomes obese, it increases your risk of obesity by about 57 percent in the same given time period. There can be many mechanisms for this effect: One possibility is that your friends say to you something like—you know, they adopt a behavior that spreads to you—like, they say, "Let's go have muffins and beer," which is a terrible combination. But you adopt that combination, and then you start gaining weight like them. Another more subtle possibility is that they start gaining weight, and it changes your ideas of what an acceptable body size is. Here, what's spreading from person to person is not a behavior, but rather a norm: An idea is spreading.

Now, headline writers had a field day with our studies. I think the headline in The New York Times was, "Are you packing it on? Blame your fat friends." What was interesting to us is that the European headline writers had a different take: They said, "Are your friends gaining weight? Perhaps you are to blame." And we thought this was a very interesting comment on America, and a kind of self-serving, "not my responsibility" kind of phenomenon.

Now, I want to be very clear: We do not think our work should or could justify prejudice against people of one or another body size at all. Our next questions was: Could we actually visualize this spread? Was weight gain in one person actually spreading to weight gain in another person? And this was complicated because we needed to take into account the fact that the network structure, the architecture of the ties, was changing across time. In addition, because obesity is not a unicentric epidemic, there's not a Patient Zero of the obesity epidemic—if we find that guy, there was a spread of obesity out from him—it's a multicentric epidemic. Lots of people are doing things at the same time. And I'm about to show you a 30 second video animation that took me and James five years of our lives to do. So, again, every dot is a person. Every tie between them is a relationship. We're going to put this into motion now, taking daily cuts through the network for about 30 years.

The dot sizes are going to grow, you're going to see a sea of yellow take over. You're going to see people be born and die—dots will appear and disappear—ties will form and break, marriages and divorces, friendings and defriendings. A lot of complexity, a lot is happening just in this 30-year period that includes the obesity epidemic. And, by the end, you're going to see clusters of obese and non-obese individuals within the network. Now, when looked at this, it changed the way I see things, because this thing, this network that's changing across time has a memory, it moves, things flow within it, it has a kind of consistency—people can die, but it doesn't die; it still persists—and it has a kind of resilience that allows it to persist across time.

And so, I came to see these kinds of social networks as living things, as living things that we could put under a kind of microscope and study and analyze and understand. And we used a variety of techniques to do this. And we started exploring all kinds of other phenomena. We looked at smoking and drinking behavior, and voting behavior, and divorce—which can spread—and altruism. And, eventually, we became interested in emotions. Now, when we have emotions, we show them. Why do we show our emotions? I mean, there would be an advantage to experiencing our emotions inside, you know, anger or happiness. But we don't just experience them, we show them. And not only do we show them, but others can read them. And, not only can they read them, but they copy them. There's emotional contagion that takes place in human populations. And so this function of emotions suggests that, in addition to any other purpose they serve, they're a kind of primitive form of communication. And that, in fact, if we really want to understand human emotions, we need to think about them in this way.

Now, we're accustomed to thinking about emotions in this way, in simple, sort of, brief periods of time. So, for example, I was giving this talk recently in New York City, and I said, "You know when you're on the subway and the other person across the subway car smiles at you, and you just instinctively smile back?" And they looked at me and said, "We don't do that in New York City." And I said, "Everywhere else in the world, that's normal human behavior." And so there's a very instinctive way in which we briefly transmit emotions to each other. And, in fact, emotional contagion can be broader still. Like we could have punctuated expressions of anger, as in riots. The question that we wanted to ask was: Could emotion spread, in a more sustained way than riots, across time and involve large numbers of people, not just this pair of individuals smiling at each other in the subway car? Maybe there's a kind of below the surface, quiet riot that animates us all the time. Maybe there are emotional stampedes that ripple through social networks. Maybe, in fact, emotions have a collective existence, not just an individual existence.

And this is one of the first images we made to study this phenomenon. Again, a social network, but now we color the people yellow if they're happy and blue if they're sad and green in between. And if you look at this image, you can right away see clusters of happy and unhappy people, again, spreading to three degrees of separation. And you might form the intuition that the unhappy people occupy a different structural location within the network. There's a middle and an edge to this network, and the unhappy people seem to be located at the edges. So to invoke another metaphor, if you imagine social networks as a kind of vast fabric of humanity—I'm connected to you and you to her, on out endlessly into the distance—this fabric is actually like an old-fashioned American quilt, and it has patches on it: happy and unhappy patches. And whether you become happy or not depends in part on whether you occupy a happy patch.

So, this work with emotions, which are so fundamental, then got us to thinking about: Maybe the fundamental causes of human social networks are somehow encoded in our genes. Because human social networks, whenever they are mapped, always kind of look like this: the picture of the network. But they never look like this. Why do they not look like this? Why don't we form human social networks that look like a regular lattice? Well, the striking patterns of human social networks, their ubiquity and their apparent purpose beg questions about whether we evolved to have human social networks in the first place, and whether we evolved to form networks with a particular structure.

And notice first of all—so, to understand this, though, we need to dissect network structure a little bit first—and notice that every person in this network has exactly the same structural location as every other person. But that's not the case with real networks. So, for example, here is a real network of college students at an elite northeastern university. And now I'm highlighting a few dots. If you look here at the dots, compare node B in the upper left to node D in the far right; B has four friends coming out from him and D has six friends coming out from him. And so, those two individuals have different numbers of friends. That's very obvious, we all know that. But certain other aspects of social network structure are not so obvious.

Compare node B in the upper left to node A in the lower left. Now, those people both have four friends, but A's friends all know each other, and B's friends do not. So the friend of a friend of A's is, back again, a friend of A's, whereas the friend of a friend of B's is not a friend of B's, but is farther away in the network. This is known as transitivity in networks. And, finally, compare nodes C and D: C and D both have six friends. If you talk to them, and you said, "What is your social life like?" they would say, "I've got six friends. That's my social experience." But now we, with a bird's eye view looking at this network, can see that they occupy very different social worlds. And I can cultivate that intuition in you by just asking you: Who would you rather be if a deadly germ was spreading through the network? Would you rather be C or D? You'd rather be D, on the edge of the network. And now who would you rather be if a juicy piece of gossip—not about you—was spreading through the network? Now, you would rather be C.

So different structural locations have different implications for your life. And, in fact, when we did some experiments looking at this, what we found is that 46 percent of the variation in how many friends you have is explained by your genes. And this is not surprising. We know that some people are born shy and some are born gregarious. That's obvious. But we also found some non-obvious things. For instance, 47 percent in the variation in whether your friends know each other is attributable to your genes. Whether your friends know each other has not just to do with their genes, but with yours. And we think the reason for this is that some people like to introduce their friends to each other—you know who you are—and others of you keep them apart and don't introduce your friends to each other. And so some people knit together the networks around them, creating a kind of dense web of ties in which they're comfortably embedded. And finally, we even found that 30 percent of the variation in whether or not people are in the middle or on the edge of the network can also be attributed to their genes. So whether you find yourself in the middle or on the edge is also partially heritable.

Now, what is the point of this? How does this help us understand? How does this help us figure out some of the problems that are affecting us these days? Well, the argument I'd like to make is that networks have value. They are a kind of social capital. New properties emerge because of our embeddedness in social networks, and these properties in here, in the structure of the networks, not just in the individuals within them. So think about these two common objects. They're both made of carbon, and yet one of them has carbon atoms in it that are arranged in one particular way—on the left—and you get graphite, which is soft and dark. But if you take the same carbon atoms and interconnect them a different way, you get diamond, which is clear and hard. And those properties of softness and hardness and darkness and clearness do not reside in the carbon atoms; they reside in the interconnections between the carbon atoms, or at least arise because of the interconnections between the carbon atoms. So, similarly, the pattern of connections among people confers upon the groups of people different properties. It is the ties between people that makes the whole greater than the sum of its parts. And so it is not just what's happening to these people—whether they're losing weight or gaining weight, or becoming rich or becoming poor, or becoming happy or not becoming happy—that affects us; it's also the actual architecture of the ties around us.

Our experience of the world depends on the actual structure of the networks in which we're residing and on all the kinds of things that ripple and flow through the network. Now, the reason, I think, that this is the case is that human beings assemble themselves and form a kind of superorganism. Now, a superorganism is a collection of individuals which show or evince behaviors or phenomena that are not reducible to the study of individuals and that must be understood by reference to, and by studying, the collective. Like, for example, a hive of bees that's finding a new nesting site, or a flock of birds that's evading a predator, or a flock of birds that's able to pool its wisdom and navigate and find a tiny speck of an island in the middle of the Pacific, or a pack of wolves that's able to bring down larger prey. Superorganisms have properties that cannot be understood just by studying the individuals. I think understanding social networks and how they form and operate can help us understand not just health and emotions but all kinds of other phenomena—like crime, and warfare, and economic phenomena like bank runs and market crashes and the adoption of innovation and the spread of product adoption.

Now, look at this. I think we form social networks because the benefits of a connected life outweigh the costs. If I was always violent towards you or gave you misinformation or made you sad or infected you with deadly germs, you would cut the ties to me, and the network would disintegrate. So the spread of good and valuable things is required to sustain and nourish social networks. Similarly, social networks are required for the spread of good and valuable things, like love and kindness and happiness and altruism and ideas. I think, in fact, that if we realized how valuable social networks are, we'd spend a lot more time nourishing them and sustaining them, because I think social networks are fundamentally related to goodness. And what I think the world needs now is more connections.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!