下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Jakob Magolan:有機化學速成班」- A Crash Course in Organic Chemistry


框選或點兩下字幕可以直接查字典喔!

I'd like you to ask yourself, what do you feel when you hear the words "organic chemistry?" What comes to mind? There is a course offered at nearly every university, and it's called Organic Chemistry, and it is a grueling, heavy introduction to the subject, a flood of content that overwhelms students, and you have to ace it if you want to become a doctor or a dentist or a veterinarian. And that is why so many students perceive this science like this...as an obstacle in their path, and they fear it and they hate it and they call it a weed-out course. What a cruel thing for a subject to do to young people, weed them out. And this perception spread beyond college campuses long ago. There is a universal anxiety about these two words.

I happen to love this science, and I think this position in which we have placed it is inexcusable. It's not good for science, and it's not good for society, and I don't think it has to be this way. And I don't mean that this class should be easier. It shouldn't. But your perception of these two words should not be defined by the experiences of premed students who frankly are going through a very anxious time of their lives. So I'm here today because I believe that a basic knowledge of organic chemistry is valuable, and I think that it can be made accessible to everybody, and I'd like to prove that to you today. Would you let me try?

Yeah!

All right, let's go for it.

Here I have one of these overpriced EpiPens. Inside it is a drug called epinephrine. Epinephrine can restart the beat of my heart, or it could stop a life-threatening allergic reaction. An injection of this right here will do it. It would be like turning the ignition switch in my body's fight-or-flight machinery. My heart rate, my blood pressure would go up so blood could rush to my muscles. My pupils would dilate. I would feel a wave of strength. Epinephrine has been the difference between life and death for many people. This is like a little miracle that you can hold in your fingers.

Here is the chemical structure of epinephrine. This is what organic chemistry looks like. It looks like lines and letters...No meaning to most people. I'd like to show you what I see when I look at that picture. I see a physical object that has depth and rotating parts, and it's moving. We call this a compound or a molecule, and it is 26 atoms that are stitched together by atomic bonds. The unique arrangement of these atoms gives epinephrine its identity, but nobody has ever actually seen one of these, because they're very small, so we're going to call this an artistic impression, and I want to explain to you how small this is. In here, I have less than half a milligram of it dissolved in water. It's the mass of a grain of sand. The number of epinephrine molecules in here is one quintillion. That's 18 zeroes. That number is hard to visualize. Seven billion of us on this planet? Maybe 400 billion stars in our galaxy? You're not even close. If you wanted to get into the right ballpark, you'd have to imagine every grain of sand on every beach, under all the oceans and lakes, and then shrink them all so they fit in here.

Epinephrine is so small we will never see it, not through any microscope ever, but we know what it looks like, because it shows itself through some sophisticated machines with fancy names like "nuclear magnetic resonance spectrometers." So visible or not, we know this molecule very well. We know it is made of four different types of atoms, hydrogen, carbon, oxygen and nitrogen. These are the colors we typically use for them. Everything in our universe is made of little spheres that we call atoms. There's about a hundred of these basic ingredients, and they're all made from three smaller particles: protons, neutrons, electrons. We arrange these atoms into this familiar table. We give them each a name and a number. But life as we know it doesn't need all of these, just a smaller subset, just these. And there are four atoms in particular that stand apart from the rest as the main building blocks of life, and they are the same ones that are found in epinephrine: hydrogen, carbon, nitrogen and oxygen. Now what I tell you next is the most important part. When these atoms connect to form molecules, they follow a set of rules. Hydrogen makes one bond, oxygen always makes two, nitrogen makes three and carbon makes four. That's it. HONC—one, two, three, four. If you can count to four, and you can misspell the word "honk," you're going to remember this for the rest of your lives.

Now here I have four bowls with these ingredients. We can use these to build molecules. Let's start with epinephrine. Now, these bonds between atoms, they're made of electrons. Atoms use electrons like arms to reach out and hold their neighbors. Two electrons in each bond, like a handshake, and like a handshake, they are not permanent. They can let go of one atom and grab another. That's what we call a chemical reaction, when atoms exchange partners and make new molecules. The backbone of epinephrine is made mostly of carbon atoms, and that's common. Carbon is life's favorite structural building material, because it makes a good number of handshakes with just the right grip strength. That's why we define organic chemistry as the study of carbon molecules.

Now, if we build the smallest molecules we can think of that follow our rules, they highlight our rules, and they have familiar names: water, ammonia and methane, H20 and NH3 and CH4. The words "hydrogen," "oxygen" and "nitrogen"—we use the same words to name these three molecules that have two atoms each. They still follow the rules, because they have one, two and three bonds between them. That's why oxygen gets called O2.
I can show you combustion. Here's carbon dioxide, CO2. Above it, let's place water and oxygen, and beside it, some flammable fuels. These fuels are made of just hydrogen and carbon. That's why we call them hydrocarbons. We're very creative.

So when these crash into molecules of oxygen, as they do in your engine or in your barbecues, they release energy and they reassemble, and every carbon atom ends up at the center of a CO2 molecule, holding on to two oxygens, and all the hydrogens end up as parts of waters, and everybody follows the rules. They are not optional, and they're not optional for bigger molecules either, like these three. This is our favorite vitamin sitting next to our favorite drug,

and morphine is one of the most important stories in medical history. It marks medicine's first real triumph over physical pain, and every molecule has a story, and they are all published. They're written by scientists, and they're read by other scientists, so we have handy representations to do this quickly on paper, and I need to teach you how to do that.

So we lay epinephrine flat on a page, and then we replace all the spheres with simple letters, and then the bonds that lie in the plane of the page, they just become regular lines, and the bonds that point forwards and backwards, they become little triangles, either solid or dashed to indicate depth. We don't actually draw these carbons. We save time by just hiding them. They're represented by corners between the bonds, and we also hide every hydrogen that's bonded to a carbon. We know they're there whenever a carbon is showing us any fewer than four bonds. The last thing that's done is the bonds between OH and NH. We just get rid of those to make it cleaner, and that's all there is to it. This is the professional way to draw molecules. This is what you see on Wikipedia pages.

It takes a little bit of practice, but I think everyone here could do it, but for today, this is epinephrine. This is also called adrenaline. They're one and the same. It's made by your adrenal glands. You have this molecule swimming through your body right now. It's a natural molecule. This EpiPen would just give you a quick quintillion more of them.

We can extract epinephrine from the adrenal glands of sheep or cattle, but that's not where this stuff comes from. We make this epinephrine in a factory by stitching together smaller molecules that come mostly from petroleum. And this is 100 percent synthetic. And that word, "synthetic," makes some of us uncomfortable. It's not like the word "natural," which makes us feel safe. But these two molecules, they cannot be distinguished. We're not talking about two cars that are coming off an assembly line here. A car can have a scratch on it, and you can't scratch an atom. These two are identical in a surreal, almost mathematical sense. At this atomic scale, math practically touches reality. And a molecule of epinephrine...it has no memory of its origin. It just is what it is, and once you have it, the words "natural" and "synthetic," they don't matter, and nature synthesizes this molecule just like we do, except nature is much better at this than we are.

Before there was life on earth, all the molecules were small, simple: carbon dioxide, water, nitrogen, just simple things. The emergence of life changed that. Life brought biosynthetic factories that are powered by sunlight, and inside these factories, small molecules crash into each other and become large ones: carbohydrates, proteins, nucleic acids, multitudes of spectacular creations. Nature is the original organic chemist, and her construction also fills our sky with the oxygen gas we breathe, this high-energy oxygen.

All of these molecules are infused with the energy of the sun. They store it like batteries. So nature is made of chemicals. Maybe you guys can help me to reclaim this word, "chemical," because it has been stolen from us. It doesn't mean toxic, and it doesn't mean harmful, and it doesn't mean man-made or unnatural. It just means "stuff," OK?

You can't have chemical-free lump charcoal. That is ridiculous.

And I'd like to do one more word. The word "natural" doesn't mean "safe," and you all know that. Plenty of nature's chemicals are quite toxic, and others are delicious, and some are both...toxic and delicious.

The only way to tell whether something is harmful is to test it, and I don't mean you guys. Professional toxicologists: we have these people. They're well-trained, and you should trust them like I do.

So nature's molecules are everywhere, including the ones that have decomposed into these black mixtures that we call petroleum. We refine these molecules. There's nothing unnatural about them. We purify them. Now, our dependence on them for energy—that means that every one of those carbons gets converted into a molecule of CO2. That's a greenhouse gas that is messing up our climate. Maybe knowing this chemistry will make that reality easier to accept for some people, I don't know, but these molecules are not just fossil fuels. They're also the cheapest available raw materials for doing something that we call synthesis. We're using them like pieces of LEGO. We have learned how to connect them or break them apart with great control. I have done a lot of this myself, and I still think it's amazing it's even possible. What we do is kind of like assembling LEGO by dumping boxes of it into washing machines, but it works.

We can make molecules that are exact copies of nature, like epinephrine, or we can make creations of our own from scratch, like these two. One of these eases the symptoms of multiple sclerosis; the other one cures a type of blood cancer that we call T-cell lymphoma. A molecule with the right size and shape, it's like a key in a lock, and when it fits, it interferes with the chemistry of a disease. That's how drugs work. Natural or synthetic, they're all just molecules that happen to fit snugly somewhere important.

But nature is much better at making them than we are, so hers look more impressive than ours, like this one. This is called vancomycin. She gave this majestic beast two chlorine atoms to wear like a pair of earrings. We found vancomycin in a puddle of mud in a jungle in Borneo in 1953. It's made by a bacteria. We can't synthesize this cost-efficiently in a lab. It's too complicated for us, but we can harvest it from its natural source, and we do, because this is one of our most powerful antibiotics. And new molecules are reported in our literature every day. We make them or we find them in every corner of this planet. And that's where drugs come from, and that's why your doctors have amazing powers...to cure deadly infections and everything else.

Being a physician today is like being a knight in shining armor. They fight battles with courage and composure, but also with good equipment. So let's not forget the role of the blacksmith in this picture, because without the blacksmith, things would look a little different...

But this science is bigger than medicine. It is oils and solvents and flavors, fabrics, all plastics, the cushions that you're sitting on right now—they're all manufactured, and they're mostly carbon, so that makes all of it organic chemistry. This is a rich science.

I left out a lot today: phosphorus and sulfur and the other atoms, and why they all bond the way they do, and symmetry and non-bonding electrons, and atoms that are charged, and reactions and their mechanisms, and it goes on and on and on, and synthesis takes a long time to learn.

But I didn't come here to teach you guys organic chemistry—I just wanted to show it to you, and I had a lot of help with that today from a young man named Weston Durland, and you've already seen him. He's an undergraduate student in chemistry, and he also happens to be pretty good with computer graphics.

So Weston designed all the moving molecules that you saw today. He and I wanted to demonstrate through the use of graphics like these to help someone talk about this intricate science. But our main goal was just to show you that organic chemistry is not something to be afraid of. It is, at its core, a window through which the beauty of the natural world looks richer.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!