下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Laura Schulz:寶寶的驚人邏輯力」- The Surprisingly Logical Minds of Babies


框選或點兩下字幕可以直接查字典喔!

Mark Twain summed up what I take to be one of the fundamental problems of cognitive science with a single witticism. He said, "There's something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment in fact."

Twain meant it as a joke, of course, but he's right: There's something fascinating about science. From a few bones, we infer the existence of dinosaurs. From spectral lines, the composition of nebulae. From fruit flies, the mechanisms of heredity, and from reconstructed images of blood flowing through the brain, or in my case, from the behavior of very young children, we try to say something about the fundamental mechanisms of human cognition. In particular, in my lab in the Department of Brain and Cognitive Sciences at MIT, I have spent the past decade trying to understand the mystery of how children learn so much from so little so quickly. Because, it turns out that the fascinating thing about science is also a fascinating thing about children, which, to put a gentler spin on Mark Twain, is precisely their ability to draw rich, abstract inferences rapidly and accurately from sparse, noisy data. I'm going to give you just two examples today. One is about a problem of generalization, and the other is about a problem of causal reasoning. And although I'm going to talk about work in my lab, this work is inspired by and indebted to a field. I'm grateful to mentors, colleagues, and collaborators around the world.

Let me start with the problem of generalization. Generalizing from small samples of data is the bread and butter of science. We poll a tiny fraction of the electorate and we predict the outcome of national elections. We see how a handful of patients responds to treatment in a clinical trial, and we bring drugs to a national market. But this only works if our sample is randomly drawn from the population. If our sample is cherry-picked in some way—say, we poll only urban voters, or say, in our clinical trials for treatments for heart disease, we include only men—the results may not generalize to the broader population.

So scientists care whether evidence is randomly sampled or not, but what does that have to do with babies? Well, babies have to generalize from small samples of data all the time. They see a few rubber ducks and learn that they float, or a few balls and learn that they bounce. And they develop expectations about ducks and balls that they're going to extend to rubber ducks and balls for the rest of their lives. And the kinds of generalizations babies have to make about ducks and balls they have to make about almost everything: shoes and ships and sealing wax and cabbages and kings.

So do babies care whether the tiny bit of evidence they see is plausibly representative of a larger population? Let's find out. I'm going to show you two movies, one from each of two conditions of an experiment, and because you're going to see just two movies, you're going to see just two babies, and any two babies differ from each other in innumerable ways. But these babies, of course, here stand in for groups of babies, and the differences you're going to see represent average group differences in babies' behavior across conditions. In each movie, you're going to see a baby doing maybe just exactly what you might expect a baby to do, and we can hardly make babies more magical than they already are. But to my mind the magical thing, and what I want you to pay attention to, is the contrast between these two conditions, because the only thing that differs between these two movies is the statistical evidence the babies are going to observe. We're going to show babies a box of blue and yellow balls, and my then-graduate student, now colleague at Stanford, Hyowon Gweon, is going to pull three blue balls in a row out of this box, and when she pulls those balls out, she's going to squeeze them, and the balls are going to squeak. And if you're a baby, that's like a TED Talk. It doesn't get better than that. But the important point is it's really easy to pull three blue balls in a row out of a box of mostly blue balls. You could do that with your eyes closed. It's plausibly a random sample from this population. And if you can reach into a box at random and pull out things that squeak, then maybe everything in the box squeaks. So maybe babies should expect those yellow balls to squeak as well. Now, those yellow balls have funny sticks on the end, so babies could do other things with them if they wanted to. They could pound them or whack them. But let's see what the baby does.

See this? Did you see that? Cool. See this one? Wow.

Told you.
See this one? Hey Clara, this one's for you. You can go ahead and play.

I don't even have to talk, right? All right, it's nice that babies will generalize properties of blue balls to yellow balls, and it's impressive that babies can learn from imitating us, but we've known those things about babies for a very long time. The really interesting question is what happens when we show babies exactly the same thing, and we can ensure it's exactly the same because we have a secret compartment and we actually pull the balls from there, but this time, all we change is the apparent population from which that evidence was drawn. This time, we're going to show babies three blue balls pulled out of a box of mostly yellow balls, and guess what? You cannot randomly draw three blue balls in a row out of a box of mostly yellow balls. That is not plausibly randomly sampled evidence. That evidence suggests that maybe Hyowon was deliberately sampling the blue balls. Maybe there's something special about the blue balls. Maybe only the blue balls squeak. Let's see what the baby does.
See this? See this toy? Oh, that was cool. See? Now this one's for you to play. You can go ahead and play.

So you just saw two 15-month-old babies do entirely different things based only on the probability of the sample they observed. Let me show you the experimental results. On the vertical axis, you'll see the percentage of babies who squeezed the ball in each condition, and as you'll see, babies are much more likely to generalize the evidence when it's plausibly representative of the population than when the evidence is clearly cherry-picked. And this leads to a fun prediction: Suppose you pulled just one blue ball out of the mostly yellow box. You can't pull three blue balls in a row at random out of a yellow box, but you could randomly sample just one blue ball. That's not an improbable sample. And if you could reach into a box at random and pull out something that squeaks, maybe everything in the box squeaks. So even though babies are going to see much less evidence for squeaking, and have many fewer actions to imitate in this one ball condition than in the condition you just saw, we predicted that babies themselves would squeeze more, and that's exactly what we found. So 15-month-old babies, in this respect, like scientists, care whether evidence is randomly sampled or not, and they use this to develop expectations about the world: what squeaks and what doesn't, what to explore and what to ignore.

Let me show you another example now, this time about a problem of causal reasoning. And it starts with a problem of confounded evidence that all of us have, which is that we are part of the world. And this might not seem like a problem to you, but like most problems, it's only a problem when things go wrong. Take this baby, for instance. Things are going wrong for him. He would like to make this toy go, and he can't. I'll show you a few-second clip. And there's two possibilities, broadly: Maybe he's doing something wrong, or maybe there's something wrong with the toy. So in this next experiment, we're going to give babies just a tiny bit of statistical data supporting one hypothesis over the other, and we're going to see if babies can use that to make different decisions about what to do.

Here's the setup. Hyowon is going to try to make the toy go and succeed. I am then going to try twice and fail both times, and then Hyowon is going to try again and succeed, and this roughly sums up my relationship to my graduate students in technology across the board. But the important point here is it provides a little bit of evidence that the problem isn't with the toy, it's with the person. Some people can make this toy go, and some can't. Now, when the baby gets the toy, he's going to have a choice. His mom is right there, so he can go ahead and hand off the toy and change the person, but there's also going to be another toy at the end of that cloth, and he can pull the cloth towards him and change the toy. So let's see what the baby does.

Two, three. Go! One, two, three, go! Arthur, I'm going to try again. One, two, three, go! Arthur, let me try again, okay? One, two, three, go! Look at that. Remember these toys? See these toys? Yeah, I'm going to put this one over here, and I'm going to give this one to you. You can go ahead and play. Okay, Laura, but of course, babies love their mommies. Of course babies give toys to their mommies when they can't make them work. So again, the really important question is what happens when we change the statistical data ever so slightly. This time, babies are going to see the toy work and fail in exactly the same order, but we're changing the distribution of evidence. This time, Hyowon is going to succeed once and fail once, and so am I. And this suggests it doesn't matter who tries this toy, the toy is broken. It doesn't work all the time. Again, the baby's going to have a choice. Her mom is right next to her, so she can change the person, and there's going to be another toy at the end of the cloth. Let's watch what she does.

Two, three, go! Let me try one more time. One, two, three, go! Hmm.

Let me try, Clara. One, two, three, go! Hmm, let me try again. One, two, three, go! I'm going to put this one over here, and I'm going to give this one to you. You can go ahead and play.

Let me show you the experimental results. On the vertical axis, you'll see the distribution of children's choices in each condition, and you'll see that the distribution of the choices children make depends on the evidence they observe. So in the second year of life, babies can use a tiny bit of statistical data to decide between two fundamentally different strategies for acting in the world: asking for help and exploring. I've just shown you two laboratory experiments out of literally hundreds in the field that make similar points, because the really critical point is that children's ability to make rich inferences from sparse data underlies all the species-specific cultural learning that we do. Children learn about new tools from just a few examples. They learn new causal relationships from just a few examples. They even learn new words, in this case in American Sign Language.

I want to close with just two points. If you've been following my world, the field of brain and cognitive sciences, for the past few years, three big ideas will have come to your attention. The first is that this is the era of the brain. And indeed, there have been staggering discoveries in neuroscience: localizing functionally specialized regions of cortex, turning mouse brains transparent, activating neurons with light. A second big idea is that this is the era of big data and machine learning, and machine learning promises to revolutionize our understanding of everything from social networks to epidemiology. And maybe, as it tackles problems of scene understanding and natural language processing, to tell us something about human cognition. And the final big idea you'll have heard is that maybe it's a good idea we're going to know so much about brains and have so much access to big data, because left to our own devices, humans are fallible, we take shortcuts, we err, we make mistakes, we're biased, and in innumerable ways, we get the world wrong. I think these are all important stories, and they have a lot to tell us about what it means to be human, but I want you to note that today I told you a very different story. It's a story about minds and not brains, and in particular, it's a story about the kinds of computations that uniquely human minds can perform, which involve rich, structured knowledge and the ability to learn from small amounts of data, the evidence of just a few examples. And fundamentally, it's a story about how starting as very small children and continuing out all the way to the greatest accomplishments of our culture, we get the world right.

Folks, human minds do not only learn from small amounts of data. Human minds think of altogether new ideas. Human minds generate research and discovery, and human minds generate art and literature and poetry and theater, and human minds take care of other humans: our old, our young, our sick. We even heal them. In the years to come, we're going to see technological innovations beyond anything I can even envision, but we are very unlikely to see anything even approximating the computational power of a human child in my lifetime or in yours. If we invest in these most powerful learners and their development, in babies and children and mothers and fathers and caregivers and teachers the ways we invest in our other most powerful and elegant forms of technology, engineering and design, we will not just be dreaming of a better future, we will be planning for one.

Thank you very much.

Laura, thank you. I do actually have a question for you. First of all, the research is insane. I mean, who would design an experiment like that? I've seen that a couple of times, and I still don't honestly believe that that can truly be happening, but other people have done similar experiments; it checks out. The babies really are that genius.

You know, they look really impressive in our experiments, but think about what they look like in real life, right? It starts out as a baby. Eighteen months later, it's talking to you, and babies' first words aren't just things like balls and ducks, they're things like "all gone," which refer to disappearance, or "uh-oh," which refer to unintentional actions. It has to be that powerful. It has to be much more powerful than anything I showed you. They're figuring out the entire world. A four-year-old can talk to you about almost anything.

And if I understand you right, the other key point you're making is, we've been through these years where there's all this talk of how quirky and buggy our minds are, that behavioral economics and the whole theories behind that that we're not rational agents. You're really saying that the bigger story is how extraordinary, and there really is genius there that is underappreciated.

One of my favorite quotes in psychology comes from the social psychologist Solomon Asch, and he said the fundamental task of psychology is to remove the veil of self-evidence from things. There are orders of magnitude more decisions you make every day that get the world right. You know about objects and their properties. You know them when they're occluded. You know them in the dark. You can walk through rooms. You can figure out what other people are thinking. You can talk to them. You can navigate space. You know about numbers. You know causal relationships. You know about moral reasoning. You do this effortlessly, so we don't see it, but that is how we get the world right, and it's a remarkable and very difficult-to-understand accomplishment.

I suspect there are people in the audience who have this view of accelerating technological power who might dispute your statement that never in our lifetimes will a computer do what a three-year-old child can do, but what's clear is that in any scenario, our machines have so much to learn from our toddlers. I think so. You'll have some machine learning folks up here. I mean, you should never bet against babies or chimpanzees or technology as a matter of practice, but it's not just a difference in quantity, it's a difference in kind. We have incredibly powerful computers, and they do do amazingly sophisticated things, often with very big amounts of data. Human minds do, I think, something quite different, and I think it's the structured, hierarchical nature of human knowledge that remains a real challenge.

Laura Schulz, wonderful food for thought. Thank you so much.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!