下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Dave Brain:行星維持生命存在的要素」- What a Planet Needs to Sustain Life


框選或點兩下字幕可以直接查字典喔!

I'm really glad to be here. I'm glad you're here, because that would be a little weird. I'm glad we're all here. And by "here," I don't mean here. Or here. But here. I mean Earth. And by "we," I don't mean those of us in this auditorium, but life, all life on Earth—from complex to single-celled, from mold to mushrooms to flying bears.

The interesting thing is, Earth is the only place we know of that has life—8.7 million species. We've looked other places, maybe not as hard as we should or we could, but we've looked and haven't found any; Earth is the only place we know of with life. Is Earth special? This is a question I've wanted to know the answer to since I was a small child, and I suspect 80 percent of this auditorium has thought the same thing and also wanted to know the answer. To understand whether there are any planets—out there in our solar system or beyond—that can support life, the first step is to understand what life here requires.

It turns out, of all of those 8.7 million species, life only needs three things. On one side, all life on Earth needs energy. Complex life like us derives our energy from the sun, but life deep underground can get its energy from things like chemical reactions. There are a number of different energy sources available on all planets. On the other side, all life needs food or nourishment. And this seems like a tall order, especially if you want a succulent tomato.

However, all life on Earth derives its nourishment from only six chemical elements, and these elements can be found on any planetary body in our solar system. So that leaves the thing in the middle as the tall pole, the thing that's hardest to achieve. Not moose, but water.

Although moose would be pretty cool.

And not frozen water, and not water in a gaseous state, but liquid water. This is what life needs to survive, all life. And many solar system bodies don't have liquid water, and so we don't look there. Other solar system bodies might have abundant liquid water, even more than Earth, but it's trapped beneath an icy shell, and so it's hard to access, it's hard to get to, it's hard to even find out if there's any life there.

So that leaves a few bodies that we should think about. So let's make the problem simpler for ourselves. Let's think only about liquid water on the surface of a planet. There are only three bodies to think about in our solar system, with regard to liquid water on the surface of a planet, and in order of distance from the sun, it's: Venus, Earth and Mars. You want to have an atmosphere for water to be liquid. You have to be very careful with that atmosphere. You can't have too much atmosphere, too thick or too warm an atmosphere, because then you end up too hot like Venus, and you can't have liquid water. But if you have too little atmosphere and it's too thin and too cold, you end up like Mars, too cold. So Venus is too hot, Mars is too cold, and Earth is just right. You can look at these images behind me and you can see automatically where life can survive in our solar system. It's a Goldilocks-type problem, and it's so simple that a child could understand it.

However, I'd like to remind you of two things from the Goldilocks story that we may not think about so often but that I think are really relevant here. Number one: if Mama Bear's bowl is too cold when Goldilocks walks into the room, does that mean it's always been too cold? Or could it have been just right at some other time? When Goldilocks walks into the room determines the answer that we get in the story. And the same is true with planets. They're not static things. They change. They vary. They evolve. And atmospheres do the same. So let me give you an example.

Here's one of my favorite pictures of Mars. It's not the highest resolution image, it's not the sexiest image, it's not the most recent image, but it's an image that shows riverbeds cut into the surface of the planet; riverbeds carved by flowing, liquid water; riverbeds that take hundreds or thousands or tens of thousands of years to form. This can't happen on Mars today. The atmosphere of Mars today is too thin and too cold for water to be stable as a liquid. This one image tells you that the atmosphere of Mars changed, and it changed in big ways. And it changed from a state that we would define as habitable, because the three requirements for life were present long ago. Where did that atmosphere go that allowed water to be liquid at the surface?

Well, one idea is it escaped away to space. Atmospheric particles got enough energy to break free from the gravity of the planet, escaping away to space, never to return. And this happens with all bodies with atmospheres. Comets have tails that are incredibly visible reminders of atmospheric escape. But Venus also has an atmosphere that escapes with time, and Mars and Earth as well. It's just a matter of degree and a matter of scale. So we'd like to figure out how much escaped over time so we can explain this transition.

How do atmospheres get their energy for escape? How do particles get enough energy to escape? There are two ways, if we're going to reduce things a little bit. Number one, sunlight. Light emitted from the sun can be absorbed by atmospheric particles and warm the particles. Yes, I'm dancing, but they—

Oh my God, not even at my wedding.

They get enough energy to escape and break free from the gravity of the planet just by warming. A second way they can get energy is from the solar wind. These are particles, mass, material, spit out from the surface of the sun, and they go screaming through the solar system at 400 kilometers per second, sometimes faster during solar storms, and they go hurtling through interplanetary space towards planets and their atmospheres, and they may provide energy for atmospheric particles to escape as well.

This is something that I'm interested in, because it relates to habitability. I mentioned that there were two things about the Goldilocks story that I wanted to bring to your attention and remind you about, and the second one is a little bit more subtle. If Papa Bear's bowl is too hot, and Mama Bear's bowl is too cold, shouldn't Baby Bear's bowl be even colder if we're following the trend? This thing that you've accepted your entire life, when you think about it a little bit more, may not be so simple. And of course, distance of a planet from the sun determines its temperature. This has to play into habitability. But maybe there are other things we should be thinking about. Maybe it's the bowls themselves that are also helping to determine the outcome in the story, what is just right.

I could talk to you about a lot of different characteristics of these three planets that may influence habitability, but for selfish reasons related to my own research and the fact that I'm standing up here holding the clicker and you're not—

I would like to talk for just a minute or two about magnetic fields. Earth has one; Venus and Mars do not. Magnetic fields are generated in the deep interior of a planet by electrically conducting churning fluid material that creates this big old magnetic field that surrounds Earth. If you have a compass, you know which way north is. Venus and Mars don't have that. If you have a compass on Venus and Mars, congratulations, you're lost.

Does this influence habitability? Well, how might it? Many scientists think that a magnetic field of a planet serves as a shield for the atmosphere, deflecting solar wind particles around the planet in a bit of a force field-type effect having to do with electric charge of those particles. I like to think of it instead as a salad bar sneeze guard for planets.

And yes, my colleagues who watch this later will realize this is the first time in the history of our community that the solar wind has been equated with mucus.

OK, so the effect, then, is that Earth may have been protected for billions of years, because we've had a magnetic field. Atmosphere hasn't been able to escape. Mars, on the other hand, has been unprotected because of its lack of magnetic field, and over billions of years, maybe enough atmosphere has been stripped away to account for a transition from a habitable planet to the planet that we see today.

Other scientists think that magnetic fields may act more like the sails on a ship, enabling the planet to interact with more energy from the solar wind than the planet would have been able to interact with by itself. The sails may gather energy from the solar wind. The magnetic field may gather energy from the solar wind that allows even more atmospheric escape to happen. It's an idea that has to be tested, but the effect and how it works seems apparent. That's because we know energy from the solar wind is being deposited into our atmosphere here on Earth. That energy is conducted along magnetic field lines down into the polar regions, resulting in incredibly beautiful aurora. If you've ever experienced them, it's magnificent. We know the energy is getting in. We're trying to measure how many particles are getting out and if the magnetic field is influencing this in any way.

So I've posed a problem for you here, but I don't have a solution yet. We don't have a solution. But we're working on it. How are we working on it? Well, we've sent spacecraft to all three planets. Some of them are orbiting now, including the MAVEN spacecraft which is currently orbiting Mars, which I'm involved with and which is led here, out of the University of Colorado. It's designed to measure atmospheric escape. We have similar measurements from Venus and Earth. Once we have all our measurements, we can combine all these together, and we can understand how all three planets interact with their space environment, with the surroundings. And we can decide whether magnetic fields are important for habitability or not.

Once we have that answer, why should you care? I mean, I care deeply...And financially as well, but deeply.

First of all, an answer to this question will teach us more about these three planets, Venus, Earth and Mars, not only about how they interact with their environment today, but how they were billions of years ago, whether they were habitable long ago or not. It will teach us about atmospheres that surround us and that are close. But moreover, what we learn from these planets can be applied to atmospheres everywhere, including planets that we're now observing around other stars. For example, the Kepler spacecraft, which is built and controlled here in Boulder, has been observing a postage stamp-sized region of the sky for a couple years now, and it's found thousands of planets—in one postage stamp-sized region of the sky that we don't think is any different from any other part of the sky.

We've gone, in 20 years, from knowing of zero planets outside of our solar system, to now having so many, that we don't know which ones to investigate first. Any lever will help. In fact, based on observations that Kepler's taken and other similar observations, we now believe that, of the 200 billion stars in the Milky Way galaxy alone, on average, every star has at least one planet. In addition to that, estimates suggest there are 40... somewhere between 40 billion and 100 billion of those planets that we would define as habitable in just our galaxy.

We have the observations of those planets, but we just don't know which ones are habitable yet. It's a little bit like being trapped on a red spot—

on a stage and knowing that there are other worlds out there and desperately wanting to know more about them, wanting to interrogate them and find out if maybe just one or two of them are a little bit like you. You can't do that. You can't go there, not yet. And so you have to use the tools that you've developed around you for Venus, Earth and Mars, and you have to apply them to these other situations, and hope that you're making reasonable inferences from the data, and that you're going to be able to determine the best candidates for habitable planets, and those that are not.

In the end, and for now, at least, this is our red spot, right here. This is the only planet that we know of that's habitable, although very soon we may come to know of more. But for now, this is the only habitable planet, and this is our red spot. I'm really glad we're here.

Thanks.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!