瀏覽器不支援
chrome 使用chrome瀏覽器,輕鬆學英文。

如有任何問題,歡迎聯絡我們

下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!

「Colin Camerer:協議時,大腦怎麼了?」- When You're Making a Deal, What's Going on in Your Brain?


框選或點兩下字幕可以直接查字典喔!

I'm going to talk about the strategizing brain. We're going to use an unusual combination of tools from game theory and neuroscience to understand how people interact socially when value is on the line.

So game theory is a branch of, originally, applied mathematics, used mostly in economics and political science, a little bit in biology, that gives us a mathematical taxonomy of social life, and it predicts what people are likely to do and believe others will do in cases where everyone's actions affect everyone else. That's a lot of things: competition, cooperation, bargaining, games like hide-and-seek and poker.

Here's a simple game to get us started. Everyone chooses a number from zero to 100, we're going to compute the average of those numbers, and whoever's closest to two-thirds of the average wins a fixed prize. So you want to be a little bit below the average number, but not too far below, and everyone else wants to be a little bit below the average number as well. Think about what you might pick. As you're thinking, this is a toy model of something like selling in the stock market during a rising market. Right? You don't want to sell too early, because you miss out on profits, but you don't want to wait too late to when everyone else sells, triggering a crash. You want to be a little bit ahead of the competition, but not too far ahead. Okay, here's two theories about how people might think about this, and then we'll see some data. Some of these will sound familiar because you probably are thinking that way. I'm using my brain theory to see. A lot of people say, "I really don't know what people are going to pick, so I think the average will be 50." They're not being really strategic at all. "And I'll pick two-thirds of 50. That's 33." That's a start. Other people who are a little more sophisticated, using more working memory, say, "I think people will pick 33 because they're going to pick a response to 50, and so I'll pick 22, which is two-thirds of 33." They're doing one extra step of thinking, two steps. That's better. And of course, in principle, you could do three, four or more, but it starts to get very difficult. Just like in language and other domains, we know that it's hard for people to parse very complex sentences with a kind of recursive structure.

This is called a cognitive hierarchy theory, by the way—something that I've worked on and a few other people. And it indicates a kind of hierarchy along with some assumptions about how many people stop at different steps and how the steps of thinking are affected by lots of interesting variables and variant people, as we'll see in a minute. A very different theory, a much more popular one, and an older one, due largely to John Nash of "A Beautiful Mind" fame, is what's called equilibrium analysis. So if you've ever taken a game theory course at any level, you will have learned a little bit about this. An equilibrium is a mathematical state in which everybody has figured out exactly what everyone else will do. It is a very useful concept, but behaviorally, it may not exactly explain what people do the first time they play these types of economic games or in situations in the outside world. In this case, the equilibrium makes a very bold prediction, which is everyone wants to be below everyone else, therefore they'll play zero.

Let's see what happens. This experiment's been done many, many times. Some of the earliest ones were done in the '90s by me and Rosemarie Nagel and others. This is a beautiful data set of 9,000 people who wrote in to three newspapers and magazines that had a contest. The contest said, send in your numbers and whoever is close to two-thirds of the average will win a big prize. And as you can see, there's so much data here, you can see the spikes very visibly. There's a spike at 33. Those are people doing one step. There is another spike visible at 22. And notice, by the way, that most people pick numbers right around there. They don't necessarily pick exactly 33 and 22. There's something a little bit noisy around it. But you can see those spikes, and they're there. There's another group of people who seem to have a firm grip on equilibrium analysis, because they're picking zero or one. But they lose, right? Because picking a number that low is actually a bad choice if other people aren't doing equilibrium analysis as well. So they're smart, but poor.

Where are these things happening in the brain? One study by Coricelli and Nagel gives a really sharp, interesting answer. So they had people play this game while they were being scanned in an fMRI, and two conditions: in some trials, they're told you're playing another person who's playing right now and we're going to match up your behavior at the end and pay you if you win. In the other trials, they're told, you're playing a computer. They're just choosing randomly. So what you see here is a subtraction of areas in which there's more brain activity when you're playing people compared to playing the computer. And you see activity in some regions we've seen today, medial prefrontal cortex, dorsomedial, however, up here, ventromedial prefrontal cortex, anterior cingulate, an area that's involved in lots of types of conflict resolution, like if you're playing "Simon Says," and also the right and left temporoparietal junction. And these are all areas which are fairly reliably known to be part of what's called a "theory of mind" circuit, or "mentalizing circuit." That is, it's a circuit that's used to imagine what other people might do. So these were some of the first studies to see this tied in to game theory.

What happens with these one- and two-step types? So we classify people by what they picked, and then we look at the difference between playing humans versus playing computers, which brain areas are differentially active. On the top you see the one-step players. There's almost no difference. The reason is they're treating other people like a computer, and the brain is too. The bottom players, you see all the activity in dorsomedial PFC. So we know that those two-step players are doing something differently.

Now if you were to step back and say, "What can we do with this information?" you might be able to look at brain activity and say, "This person's going to be a good poker player," or, "This person's socially naive," and we might also be able to study things like development of adolescent brains once we have an idea of where this circuitry exists.

Okay. Get ready. I'm saving you some brain activity, because you don't need to use your hair detector cells. You should use those cells to think carefully about this game. This is a bargaining game. Two players who are being scanned using EEG electrodes are going to bargain over one to six dollars. If they can do it in 10 seconds, they're going to actually earn that money. If 10 seconds goes by and they haven't made a deal, they get nothing. That's kind of a mistake together. The twist is that one player, on the left, is informed about how much on each trial there is. They play lots of trials with different amounts each time. In this case, they know there's four dollars. The uninformed player doesn't know, but they know that the informed player knows. So the uninformed player's challenge is to say, "Is this guy really being fair or are they giving me a very low offer in order to get me to think that there's only one or two dollars available to split?" in which case they might reject it and not come to a deal. So there's some tension here between trying to get the most money but trying to goad the other player into giving you more. And the way they bargain is to point on a number line that goes from zero to six dollars, and they're bargaining over how much the uninformed player gets, and the informed player's going to get the rest. So this is like a management-labor negotiation in which the workers don't know how much profits the privately held company has, right, and they want to maybe hold out for more money, but the company might want to create the impression that there's very little to split: "I'm giving you the most that I can."

First some behavior. So a bunch of the subject pairs, they play face to face. We have some other data where they play across computers. That's an interesting difference, as you might imagine. But a bunch of the face-to-face pairs agree to divide the money evenly every single time. Boring. It's just not interesting neurally. It's good for them. They make a lot of money. But we're interested in, can we say something about when disagreements occur versus don't occur?

So this is the other group of subjects who often disagree. So they have a chance of—they bicker and disagree and end up with less money. They might be eligible to be on "Real Housewives," the TV show. Okay, you see on the left, when the amount to divide is one, two or three dollars, they disagree about half the time, and when the amount is four, five, six, they agree quite often. This turns out to be something that's predicted by a very complicated type of game theory you should come to graduate school at CalTech and learn about. It's a little too complicated to explain right now, but the theory tells you that this shape kind of should occur. Your intuition might tell you that too.

Now I'm going to show you the results from the EEG recording. Very complicated. The right brain schematic is the uninformed person, and the left is the informed. Remember that we scanned both brains at the same time, so we can ask about time-synced activity in similar or different areas simultaneously, just like if you wanted to study a conversation and you were scanning two people talking to each other and you'd expect common activity in language regions when they're actually kind of listening and communicating. So the arrows connect regions that are active at the same time, and the direction of the arrows flows from the region that's active first in time, and the arrowhead goes to the region that's active later. So in this case, if you look carefully, most of the arrows flow from right to left. That is, it looks as if the uninformed brain activity is happening first, and then it's followed by activity in the informed brain. And by the way, these were trials where their deals were made. This is from the first two seconds. We haven't finished analyzing this data, so we're still peeking in, but the hope is that we can say something in the first couple of seconds about whether they'll make a deal or not, which could be very useful in thinking about avoiding litigation and ugly divorces and things like that. Those are all cases in which a lot of value is lost by delay and strikes.

Here's the case where the disagreements occur. You can see it looks different than the one before. There's a lot more arrows. That means that the brains are synced up more closely in terms of simultaneous activity, and the arrows flow clearly from left to right. That is, the informed brain seems to be deciding, "We're probably not going to make a deal here." And then later there's activity in the uninformed brain.

Next I'm going to introduce you to some relatives. They're hairy, smelly, fast and strong. You might be thinking back to your last Thanksgiving. Maybe if you had a chimpanzee with you. Charles Darwin and I and you broke off from the family tree from chimpanzees about five million years ago. They're still our closest genetic kin. We share 98.8 percent of the genes. We share more genes with them than zebras do with horses. And we're also their closest cousin. They have more genetic relation to us than to gorillas. So how humans and chimpanzees behave differently might tell us a lot about brain evolution.

So this is an amazing memory test from Nagoya, Japan, Primate Research Institute, where they've done a lot of this research. This goes back quite a ways. They're interested in working memory. The chimp is going to see, watch carefully, they're going to see 200 milliseconds' exposure—that's fast, that's eight movie frames—of numbers one, two, three, four, five. Then they disappear and they're replaced by squares, and they have to press the squares that correspond to the numbers from low to high to get an apple reward. Let's see how they can do it. This is a young chimp. The young ones are better than the old ones, just like humans. And they're highly experienced, so they've done this thousands and thousands of time. Obviously there's a big training effect, as you can imagine. You can see they're very blase and kind of effortless. Not only can they do it very well, they do it in a sort of lazy way. Right? Who thinks you could beat the chimps? Wrong. We can try. We'll try. Maybe we'll try.

Okay, so the next part of this study I'm going to go quickly through is based on an idea of Tetsuro Matsuzawa. He had a bold idea that—what he called the cognitive trade-off hypothesis. We know chimps are faster and stronger. They're also very obsessed with status. His thought was, maybe they've preserved brain activities and they practice them in development that are really, really important to them to negotiate status and to win, which is something like strategic thinking during competition. So we're going to check that out by having the chimps actually play a game by touching two touch screens. The chimps are actually interacting with each other through the computers. They're going to press left or right. One chimp is called a matcher. They win if they press left, left, like a seeker finding someone in hide-and-seek, or right, right. The mismatcher wants to mismatch. They want to press the opposite screen of the chimp. And the rewards are apple cube rewards. So here's how game theorists look at these data. This is a graph of the percentage of times the matcher picked right on the x-axis, and the percentage of times they predicted right by the mismatcher on the y-axis. Okay. So a point here is the behavior by a pair of players, one trying to match, one trying to mismatch. The NE square in the middle—actually NE, CH and QRE—those are three different theories of Nash equilibrium, and others, tells you what the theory predicts, which is that they should match 50-50, because if you play left too much, for example, I can exploit that if I'm the mismatcher by then playing right. And as you can see, the chimps, each chimp is one triangle, are circled around, hovering around that prediction.

Now we move the payoffs. We're actually going to make the left, left payoff for the matcher a little bit higher. Now they have three apple cubes. Game theoretically, that should actually make the mismatcher's behavior shift, because what happens is, the mismatcher will think, oh, this guy's going to go for the big reward, and so I'm going to go to the right, make sure he doesn't get it. Okay. And as you can see, their behavior moves up in the direction of this change in the Nash equilibrium. Finally, we changed the payoffs one more time. Now it's four apple cubes, and their behavior again moves towards the Nash equilibrium. It's sprinkled around, but if you average the chimps out, they're really, really close, within .01.They're actually closer than any species we've observed.

What about humans? You think you're smarter than a chimpanzee? Here's two human groups in green and blue. They're closer to 50-50. They're not responding to payoffs as closely, and also if you study their learning in the game, they aren't as sensitive to previous rewards. The chimps are playing better than the humans, better in the sense of adhering to game theory. And these are two different groups of humans from Japan and Africa. They replicate quite nicely. None of them are close to where the chimps are.

So here are some things we learned today. People seem to do a limited amount of strategic thinking using theory of mind. We have some preliminary evidence from bargaining that early warning signs in the brain might be used to predict whether there will be a bad disagreement that costs money, and chimps are better competitors than humans, as judged by game theory. Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!