下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Paul Ewald:我們可以養細菌嗎?」- Can We Domesticate Germs?

觀看次數:3337  • 

框選或點兩下字幕可以直接查字典喔!

What I'd like to do is just drag us all down into the gutter, and actually all the way down into the sewer because I want to talk about diarrhea. And in particular, I want to talk about the design of diarrhea. And when evolutionary biologists talk about design, they really mean design by natural selection. And that brings me to the title of the talk, "Using Evolution to Design Disease Organisms Intelligently." And I also have a little bit of a sort of smartass subtitle to this. But I'm not just doing this to be cute. I really think that this subtitle explains what somebody like me, who's sort of a Darwin wannabe, how they actually look at one's role in sort of coming into this field of health sciences and medicine. It's really not a very friendly field for evolutionary biologists. You actually see a great potential, but you see a lot of people who are sort of defending their turf, and may actually be very resistant to try to...resistant, when one tries to introduce ideas.

So, all of the talk today is going to deal with two general questions. One is that, why are some disease organisms more harmful? And a very closely related question, which is, how can we take control of this situation once we understand the answer to the first question? How can we make the harmful organisms more mild? And I'm going to be talking, to begin with, as I said, about diarrheal disease organisms. And the focus when I'm talking about the diarrheal organisms, as well as the focus when I'm talking about any organisms that cause acute infectious disease, is to think about the problem from a germ's point of view, germ's-eye view. And in particular, to think about a fundamental idea which I think makes sense out of a tremendous amount of variation in the variation and harmfulness of disease organisms. And that idea is that from the germ's-eye point of view, disease organisms have to get from one host to another, and often they have to rely on the well-being of the host to move them to another host.

But not always. Sometimes, you get disease organisms that don't rely on host mobility at all for transmission. And when you have that, then evolutionary theory tells us that natural selection will favor the more exploitative, more predator-like organisms. So, natural selection will favor organisms that are more likely to cause damage. If instead transmission to another host requires host mobility, then we expect that the winners of the competition will be the milder organisms. So, if the pathogen doesn't need the host to be healthy and active, and actual selection favors pathogens that take advantage of those hosts, the winners in the competition are those that exploit the hosts for their own reproductive success. But if the host needs to be mobile in order to transmit the pathogen, then it's the benign ones that tend to be the winners.

So, I'm going to begin by applying this idea to diarrheal diseases. Diarrheal disease organisms get transmitted in basically three ways. They can be transmitted from person-to-person contact, person-to-food-then-to-person contact, when somebody eats contaminated food, or they can be transmitted through the water. And when they're transmitted through the water, unlike the first two modes of transmission, these pathogens don't rely on a healthy host for transmission. A person can be sick in bed and still infect tens, even hundreds of other individuals. To sort of illustrate that, this diagram emphasizes that if you've got a sick person in bed, somebody's going to be taking out the contaminated materials. They're going to wash those contaminated materials, and then the water may move into sources of drinking water. People will come in to those places where you've got contaminated drinking water, bring things back to the family, may drink right at that point. The whole point is that a person who can't move can still infect many other individuals.

And so, the theory tells us that when diarrheal disease organisms are transported by water, we expect them to be more predator-like, more harmful. And you can test these ideas. So, one way you can test is just look at all diarrheal bacteria, and see whether or not the ones that tend to be more transmitted by water, tend to be more harmful. And the answer is—yep, they are. Now I put those names in there just for the bacteria buffs, but the main point here is that—there's a lot of them here, I can tell—the main point here is that those data points all show a very strong, positive association between the degree to which a disease organism is transmitted by water, and how harmful they are, how much death they cause per untreated infection. So this suggests we're on the right track. But this, to me, suggests that we really need to ask some additional questions.

Remember the second question that I raised at the outset was, how can we use this knowledge to make disease organisms evolve to be mild? Now, this suggests that if you could just block waterborne transmission, you could cause disease organisms to shift from the right-hand side of that graph to the left-hand side of the graph. But it doesn't tell you how long. I mean, if this would require thousands of years, then it's worthless in terms of controlling of these pathogens. But if it could occur in just a few years, then it might be a very important way to control some of the nasty problems that we haven't been able to control. In other words, this suggests that we could domesticate these organisms. We could make them evolve to be not so harmful to us.

And so, as I was thinking about this, I focused on this organism, which is the El Tor biotype of the organism called Vibrio cholerae. And that is the species of organism that is responsible for causing cholera. And the reason I thought this is a really great organism to look at is that we understand why it's so harmful. It's harmful because it produces a toxin, and that toxin is released when the organism gets into our intestinal tract. It causes fluid to flow from the cells that line our intestine into the lumen, the internal chamber of our intestine, and then that fluid goes the only way it can, which is out the other end. And it flushes out thousands of different other competitors that would otherwise make life difficult for the Vibrios.

So what happens, if you've got an organism, it produces a lot of toxin. After a few days of infection you end up having—you have the fecal material really isn't so disgusting as we might imagine. It's sort of cloudy water. And if you took a drop of that water, you might find a million diarrheal organisms. If your organism produced a lot of toxin, you might find 10 million, or 100 million. If it didn't produce a lot of this toxin, then you might find a smaller number. So the task is to try to figure out how to determine whether or not you could get an organism like this to evolve towards mildness by blocking waterborne transmission, thereby allowing the organism only to be transmitted by person-to-person contact, or person-food-person contact—both of which would really require that people be mobile and fairly healthy for transmission.

Now, I can think of some possible experiments. One would be to take a lot of different strains of this organism—some that produce a lot of toxins, some that produce a little—and take those strains and spew them out in different countries. Some countries that might have clean water supplies, so that you can't get waterborne transmission: you expect the organism to evolve to mildness there. Other countries, in which you've got a lot of waterborne transmission, there you expect these organisms to evolve towards a high level of harmfulness, right? There's a little ethical problem in this experiment. I was hoping to hear a few gasps at least. That makes me worry a little bit.

But anyhow, the laughter makes me feel a little bit better. And this ethical problem's a big problem. Just to emphasize this, this is what we're really talking about. Here's a girl who's almost dead. She got rehydration therapy, she perked up, within a few days she was looking like a completely different person. So, we don't want to run an experiment like that. But interestingly, just that thing happened in 1991. In 1991, this cholera organism got into Lima, Peru, and within two months it had spread to the neighboring areas. Now, I don't know how that happened, and I didn't have anything to do with it, I promise you. I don't think anybody knows, but I'm not averse to, once that's happened, to see whether or not the prediction that we would make, that I did make before, actually holds up. Did the organism evolve to mildness in a place like Chile, which has some of the most well protected water supplies in Latin America? And did it evolve to be more harmful in a place like Ecuador, which has some of the least well protected? And Peru's got something sort of in between.

And so, with funding from the Bosack-Kruger Foundation, I got a lot of strains from these different countries and we measured their toxin production in the lab. And we found that in Chile—within two months of the invasion of Peru you had strains entering Chile—and when you look at those strains, in the very far left-hand side of this graph, you see a lot of variation in the toxin production. Each dot corresponds to an islet from a different person—a lot of variation on which natural selection can act. But the interesting point is, if you look over the 1990s, within a few years the organisms evolved to be more mild. They evolved to produce less toxin. And to just give you a sense of how important this might be, if we look in 1995, we find that there's only one case of cholera, on average, reported from Chile every two years.

So, it's controlled, probably. That's how much we have in America, cholera that's acquired endemically, and we don't think we've got a problem here. They didn't—they solved the problem in Chile. But, before we get too confident, we'd better look at some of those other countries, and make sure that this organism doesn't just always evolve toward mildness. Well, in Peru it didn't. And in Ecuador—remember, this is the place where it has the highest potential waterborne transmission—it looked like it got more harmful. In every case there's a lot of variation, but something about the environment the people are living in, and I think the only realistic explanation is that it's the degree of waterborne transmission, favored the harmful strains in one place, and mild strains in another.

So, this is very encouraging, it suggests that something that we might want to do anyhow, if we had enough money, could actually give us a much bigger bang for the buck. It would make these organisms evolve to mildness, so that even though people might be getting infected, they'd be infected with mild strains. It wouldn't be causing severe disease. But there's another really interesting aspect of this, and this is that if you could control the evolution of virulence, evolution of harmfulness, then you should be able to control antibiotic resistance. And the idea is very simple. If you've got a harmful organism, a high proportion of the people are going to be symptomatic, a high proportion of the people are going to be going to get antibiotics. You've got a lot of pressure favoring antibiotic resistance, so you get increased virulence leading to the evolution of increased antibiotic resistance. And once you get increased antibiotic resistance, the antibiotics aren't knocking out the harmful strains anymore. So, you've got a higher level of virulence. So, you get this vicious cycle.

The goal is to turn this around. If you could cause an evolutionary decrease in virulence by cleaning up the water supply, you should be able to get an evolutionary decrease in antibiotic resistance. So, we can go to the same countries and look and see. Did Chile avoid the problem of antibiotic resistance, whereas did Ecuador actually have the beginnings of the problem? If we look in the beginning of the 1990s, we see, again, a lot of variation. In this case, on the Y-axis, we've just got a measure of antibiotic sensitivity—and I won't go into that. But we've got a lot of variation in antibiotic sensitivity in Chile, Peru and Ecuador, and no trend across the years. But if we look at the end of the 1990s, just half a decade later, we see that in Ecuador they started having a resistance problem. Antibiotic sensitivity was going down. And in Chile, you still had antibiotic sensitivity.

So, it looks like Chile dodged two bullets. They got the organism to evolve to mildness, and they got no development of antibiotic resistance. Now, these ideas should apply across the board, as long as you can figure out why some organisms evolved to virulence. And I want to give you just one more example, because we've talked a little bit about malaria. And the example I want to deal with is, or the idea I want to deal with, the question is, what can we do to try to get the malarial organism to evolve to mildness? Now, malaria's transmitted by a mosquito, and normally if you're infected with malaria, and you're feeling sick, it makes it even easier for the mosquito to bite you.

And you can show, just by looking at data from literature, that vector-borne diseases are more harmful than non-vector-borne diseases. But I think there's a really fascinating example of what one can do experimentally to try to actually demonstrate this. In the case of waterborne transmission, we'd like to clean up the water supplies, see whether or not we can get those organisms to evolve towards mildness. In the case of malaria, what we'd like to do is mosquito-proof houses. And the logic's a little more subtle here. If you mosquito-proof houses, when people get sick, they're sitting in bed—or in mosquito-proof hospitals, they're sitting in a hospital bed—and the mosquitoes can't get to them.

So, if you're a harmful variant in a place where you've got mosquito-proof housing, then you're a loser. The only pathogens that get transmitted are the ones that are infecting people that feel healthy enough to walk outside and get mosquito bites. So, if you were to mosquito proof houses, you should be able to get these organisms to evolve to mildness. And there's a really wonderful experiment that was done that suggests that we really should go ahead and do this. And that experiment was done in Northern Alabama. Just to give you a little perspective on this, I've given you a star at the intellectual center of the United States, which is right there in Louisville, Kentucky. And this really cool experiment was done about 200 miles south of there, in Northern Alabama, by the Tennessee Valley Authority. They had dammed up the Tennessee River. They'd caused the water to back up, they needed electric, hydroelectric power. And when you get stagnant water, you get mosquitoes. They found in the late '30s—10 years after they'd made these dams—that the people in Northern Alabama were infected with malaria, about a third to half of them were infected with malaria.

OK, this shows you the positions of some of these dams. OK, so the Tennessee Valley Authority was in a little bit of a bind. There wasn't DDT, there wasn't chloroquines: what do they do? Well, they decided to mosquito proof every house in Northern Alabama. So they did. They divided Northern Alabama into 11 zones, and within three years, about 100 dollars per house, they mosquito proofed every house. And these are the data. Every row across here represents one of those 11 zones. And the asterisks represent the time at which the mosquito proofing was complete. And so what you can see is that just the mosquito-proofed housing, and nothing else, caused the eradication of malaria. And this was, incidentally, published in 1949, in the leading textbook of malaria, called "Boyd's Malariology." But almost no malaria experts even know it exists. This is important, because it tells us that if you have moderate biting densities, you can eradicate malaria by mosquito proofing houses.

Now, I would suggest that you could do this in a lot of places. Like, you know, sub-Saharan...just as you get into the malaria zone, sub-Saharan Africa. But as you move to really intense biting rate areas, like Nigeria, you're certainly not going to eradicate. But that's when you should be favoring evolution towards mildness. So to me, it's an experiment that's waiting to happen, and if it confirms the prediction, then we should have a very powerful tool. In a way, much more powerful than the kind of tools we're looking at, because most of what's being done today is to rely on things like anti-malarial drugs. And we know that, although it's great to make those anti-malarial drugs available at really low cost and high frequency, we know that when you make them highly available you're going to get resistance to those drugs. And so it's a short-term solution. This is a long-term solution.

What I'm suggesting here is that we could get evolution working in the direction we want it to go, rather than always having to battle evolution as a problem that stymies our efforts to control the pathogen, for example with anti-malarial drugs. So, this table I've given just to emphasize that I've only talked about two examples. But as I said earlier, this kind of logic applies across the board for infectious diseases, and it ought to. Because when we're dealing with infectious diseases, we're dealing with living systems. We're dealing with living systems; we're dealing with systems that evolve. And so if you do something with those systems, they're going to evolve one way or another. And all I'm saying is that we need to figure out how they'll evolve, so that—we need to adjust our interventions to get the most bang for the intervention buck, so that we can get these organisms to evolve in the direction we want them to go.

So, I don't really have time to talk about those things, but I did want to put them up there, just to give you a sense that there really are solutions to controlling the evolution of harmfulness of some of the nasty pathogens that we're confronted with. And this links up with a lot of the other ideas that have been talked about. So, for example, earlier today there was discussion of, how do you really lower sexual transmission of HIV? What this emphasizes is that we need to figure out how it will work. Will it maybe get lowered if we alter the economy of the area? It may get lowered if we intervene in ways that encourage people to stay more faithful to partners, and so on.

But the key thing is to figure out how to lower it, because if we lower it, we'll get an evolutionary change in the virus. And the data really do support this: that you actually do get the virus evolving towards mildness. And that will just add to the effectiveness of our control efforts. So the other thing I really like about this, besides the fact that it brings a whole new dimension into the study of control of disease, is that often the kinds of interventions that you want, that it indicates should be done, are the kinds of interventions that people want anyhow. But people just haven't been able to justify the cost.

So, this is the kind of thing I'm talking about. If we know that we're going to get extra bang for the buck from providing clean water, then I think that we can say, let's push the effort into that aspect of the control, so that we can actually solve the problem, even though, if you just look at the frequency of infection, you would suggest that you can't solve the problem well enough just by cleaning up water supply. Anyhow, I'll end that there, and thank you very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!