下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Fatima AlZahraa Alatraktchi:了解細菌的祕密語言,早期偵測疾病」- To Detect Diseases Earlier Lets Speak Bacterias Secret Language

觀看次數:2199  • 

框選或點兩下字幕可以直接查字典喔!

You don't know them. You don't see them. But they're always around, whispering, making secret plans, building armies with millions of soldiers. And when they decide to attack, they all attack at the same time. I'm talking about bacteria. Who did you think I was talking about?

Bacteria live in communities just like humans. They have families, they talk, and they plan their activities. And just like humans, they trick, deceive, and some might even cheat on each other. What if I tell you that we can listen to bacterial conversations and translate their confidential information into human language? And what if I tell you that translating bacterial conversations can save lives? I hold a PhD in nanophysics, and I've used nanotechnology to develop a real-time translation tool that can spy on bacterial communities and give us recordings of what bacteria are up to.

Bacteria live everywhere. They're in the soil, on our furniture and inside our bodies. In fact, 90 percent of all the live cells in this theater are bacterial. Some bacteria are good for us; they help us digest food or produce antibiotics. And some bacteria are bad for us; they cause diseases and death. To coordinate all the functions bacteria have, they have to be able to organize, and they do that just like us humans—by communicating. But instead of using words, they use signaling molecules to communicate with each other. When bacteria are few, the signaling molecules just flow away, like the screams of a man alone in the desert. But when there are many bacteria, the signaling molecules accumulate, and the bacteria start sensing that they're not alone. They listen to each other. In this way, they keep track of how many they are and when they're many enough to initiate a new action. And when the signaling molecules have reached a certain threshold, all the bacteria sense at once that they need to act with the same action.

So bacterial conversation consists of an initiative and a reaction, a production of a molecule and the response to it. In my research, I focused on spying on bacterial communities inside the human body. How does it work? We have a sample from a patient. It could be a blood or spit sample. We shoot electrons into the sample, the electrons will interact with any communication molecules present, and this interaction will give us information on the identity of the bacteria, the type of communication and how much the bacteria are talking.

But what is it like when bacteria communicate? Before I developed the translation tool, my first assumption was that bacteria would have a primitive language, like infants that haven't developed words and sentences yet. When they laugh, they're happy; when they cry, they're sad. Simple as that. But bacteria turned out to be nowhere as primitive as I thought they would be. A molecule is not just a molecule. It can mean different things depending on the context, just like the crying of babies can mean different things: sometimes the baby is hungry, sometimes it's wet, sometimes it's hurt or afraid. Parents know how to decode those cries. And to be a real translation tool, it had to be able to decode the signaling molecules and translate them depending on the context. And who knows? Maybe Google Translate will adopt this soon.

Let me give you an example. I've brought some bacterial data that can be a bit tricky to understand if you're not trained, but try to take a look.

Here's a happy bacterial family that has infected a patient. Let's call them the Montague family. They share resources, they reproduce, and they grow. One day, they get a new neighbor, bacterial family Capulet.

Everything is fine, as long as they're working together. But then something unplanned happens. Romeo from Montague has a relationship with Juliet from Capulet. And yes, they share genetic material.

Now, this gene transfer can be dangerous to the Montagues that have the ambition to be the only family in the patient they have infected, and sharing genes contributes to the Capulets developing resistance to antibiotics. So the Montagues start talking internally to get rid of this other family by releasing this molecule.

And with subtitles:

Let's coordinate an attack. And then everybody at once responds by releasing a poison that will kill the other family.

The Capulets respond by calling for a counterattack.

And they have a battle.

This is a video of real bacteria dueling with swordlike organelles, where they try to kill each other by literally stabbing and rupturing each other. Whoever's family wins this battle becomes the dominant bacteria.

So what I can do is to detect bacterial conversations that lead to different collective behaviors like the fight you just saw. And what I did was to spy on bacterial communities inside the human body in patients at a hospital. I followed 62 patients in an experiment, where I tested the patient samples for one particular infection, without knowing the results of the traditional diagnostic test.

Now, in bacterial diagnostics, a sample is smeared out on a plate, and if the bacteria grow within five days, the patient is diagnosed as infected. When I finished the study and I compared the tool results to the traditional diagnostic test and the validation test, I was shocked. It was far more astonishing than I had ever anticipated.

But before I tell you what the tool revealed, I would like to tell you about a specific patient I followed, a young girl. She had cystic fibrosis, a genetic disease that made her lungs susceptible to bacterial infections. This girl wasn't a part of the clinical trial. I followed her because I knew from her medical record that she had never had an infection before. Once a month, this girl went to the hospital to cough up a sputum sample that she spit in a cup. This sample was transferred for bacterial analysis at the central laboratory so the doctors could act quickly if they discovered an infection. And it allowed me to test my device on her samples as well.

The first two months I measured on her samples, there was nothing. But the third month, I discovered some bacterial chatter in her sample. The bacteria were coordinating to damage her lung tissue. But the traditional diagnostics showed no bacteria at all. I measured again the next month, and I could see that the bacterial conversations became even more aggressive. Still, the traditional diagnostics showed nothing. My study ended, but a half a year later, I followed up on her status to see if the bacteria only I knew about had disappeared without medical intervention. They hadn't. But the girl was now diagnosed with a severe infection of deadly bacteria. It was the very same bacteria my tool discovered earlier. And despite aggressive antibiotic treatment, it was impossible to eradicate the infection. Doctors deemed that she would not survive her 20s.

When I measured on this girl's samples, my tool was still in the initial stage. I didn't even know if my method worked at all, therefore I had an agreement with the doctors not to tell them what my tool revealed in order not to compromise their treatment. So when I saw these results that weren't even validated, I didn't dare to tell because treating a patient without an actual infection also has negative consequences for the patient. But now we know better, and there are many young boys and girls that still can be saved because, unfortunately, this scenario happens very often. Patients get infected, the bacteria somehow don't show on the traditional diagnostic test, and suddenly, the infection breaks out in the patient with severe symptoms. And at that point, it's already too late.

The surprising result of the 62 patients I followed was that my device caught bacterial conversations in more than half of the patient samples that were diagnosed as negative by traditional methods. In other words, more than half of these patients went home thinking they were free from infection, although they actually carried dangerous bacteria. Inside these wrongly diagnosed patients, bacteria were coordinating a synchronized attack. They were whispering to each other. What I call "whispering bacteria" are bacteria that traditional methods cannot diagnose. So far, it's only the translation tool that can catch those whispers. I believe that the time frame in which bacteria are still whispering is a window of opportunity for targeted treatment. If the girl had been treated during this window of opportunity, it might have been possible to kill the bacteria in their initial stage, before the infection got out of hand.

What I experienced with this young girl made me decide to do everything I can to push this technology into the hospital. Together with doctors, I'm already working on implementing this tool in clinics to diagnose early infections.

Although it's still not known how doctors should treat patients during the whispering phase, this tool can help doctors keep a closer eye on patients in risk. It could help them confirm if a treatment had worked or not, and it could help answer simple questions: Is the patient infected? And what are the bacteria up to?

Bacteria talk, they make secret plans, and they send confidential information to each other. But not only can we catch them whispering, we can all learn their secret language and become ourselves bacterial whisperers. And, as bacteria would say, "3-oxo-C12-aniline."

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!