下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Blaise Agüera y Arcas:電腦如何學創意」- How Computers Are Learning to Be Creative

觀看次數:2618  • 

框選或點兩下字幕可以直接查字典喔!

So, I lead a team at Google that works on machine intelligence; in other words, the engineering discipline of making computers and devices able to do some of the things that brains do. And this makes us interested in real brains and neuroscience as well, and especially interested in the things that our brains do that are still far superior to the performance of computers.

Historically, one of those areas has been perception, the process by which things out there in the world—sounds and images—can turn into concepts in the mind. This is essential for our own brains, and it's also pretty useful on a computer. The machine perception algorithms, for example, that our team makes, are what enable your pictures on Google Photos to become searchable, based on what's in them. The flip side of perception is creativity: turning a concept into something out there into the world. So over the past year, our work on machine perception has also unexpectedly connected with the world of machine creativity and machine art.

I think that Michelangelo had a penetrating insight into to this dual relationship between perception and creativity. This is a famous quote of his: "Every block of stone has a statue inside of it, and the job of the sculptor is to discover it." So I think that what Michelangelo was getting at is that we create by perceiving, and that perception itself is an act of imagination and is the stuff of creativity.

The organ that does all the thinking and perceiving and imagining, of course, is the brain. And I'd like to begin with a brief bit of history about what we know about brains. Because unlike, say, the heart or the intestines, you really can't say very much about a brain by just looking at it, at least with the naked eye. The early anatomists who looked at brains gave the superficial structures of this thing all kinds of fanciful names, like hippocampus, meaning "little shrimp." But of course, that sort of thing doesn't tell us very much about what's actually going on inside.

The first person who, I think, really developed some kind of insight into what was going on in the brain was the great Spanish neuroanatomist, Santiago Ramón y Cajal, in the 19th century, who used microscopy and special stains that could selectively fill in or render in very high contrast the individual cells in the brain, in order to start to understand their morphologies. And these are the kinds of drawings that he made of neurons in the 19th century.

This is from a bird brain. And you see this incredible variety of different sorts of cells, even the cellular theory itself was quite new at this point. And these structures, these cells that have these arborizations, these branches that can go very, very long distances—this was very novel at the time. They're reminiscent, of course, of wires. That might have been obvious to some people in the 19th century; the revolutions of wiring and electricity were just getting underway. But in many ways, these microanatomical drawings of Ramón y Cajal's, like this one, they're still in some ways unsurpassed.

We're still more than a century later, trying to finish the job that Ramón y Cajal started. These are raw data from our collaborators at the Max Planck Institute of Neuroscience. And what our collaborators have done is to image little pieces of brain tissue. The entire sample here is about one cubic millimeter in size, and I'm showing you a very, very small piece of it here. That bar on the left is about one micron. The structures that you see are mitochondria that are the size of bacteria. And these are consecutive slices through this very, very tiny block of tissue. Just for comparison's sake, the diameter of an average strand of hair is about 100 microns. So we're looking at something much, much smaller than a single strand of hair.

And from these kinds of serial electron microscopy slices, one can start to make reconstructions in 3D of neurons that look like these. So these are sort of in the same style as Ramon y Cajal. Only a few neurons lit up, because otherwise we wouldn't be able to see anything here. So it would be so crowded, so full of structure, of wiring all connecting one neuron to another.

So Ramon y Cajal was a little bit ahead of his time, and progress on understanding the brain proceeded slowly over the next few decades. But we knew that neurons used electricity, and by World War II, our technology was advanced enough to start doing real electrical experiments on live neurons to better understand how they worked. And this was the very same time when computers were being invented, very much based on the idea of modeling the brain—of "intelligent machinery," as Alan Turing called it, one of the fathers of computer science.

Warren McCulloch and Walter Pitts looked at Ramon y Cajal's drawing of visual cortex, which I'm showing here. And this is the cortex that processes imagery that comes from the eye. And for them, this looked like a circuit diagram. So there are a lot of details in McCulloch and Pitts's circuit diagram that are not quite right. But this basic idea that visual cortex works like a series of computational elements that pass information one to the next in a cascade, is essentially correct.

So, let's talk for a moment about what a model for processing visual information would need to do. The basic task of perception is to take an image like this one and say, "That's a bird," which is a very simple thing for us to do with our brains. But you should all understand that for a computer, this was pretty much impossible just a few years ago. The classical computing paradigm is not one in which this task is easy to do.

So what's going on between the pixels, between the image of the bird and the word "bird," is essentially a set of neurons connected to each other in a neural network, as I'm diagramming here. And this neural network could be biological inside our visual cortices, or, nowadays, we start to have the capability to model such neural networks on the computer. And I'll show you what that actually looks like.

So the pixels you can think about as a first layer of neurons, and that's, in fact, how it works in the eye—that's the neurons in the retina. And those feed forward into one layer after another layer, after another layer of neurons, all connected by synapses of different weights. The behavior of this network is characterized by the strengths of all of those synapses. Those characterize the computational properties of this network. And at the end of the day, you have a neuron or a small group of neurons that light up, saying, "bird."

Now I'm going to represent those three things—the input pixels and the synapses in the neural network, and bird, the output—by three variables: x, w and y. There are maybe a million or so x's—a million pixels in that image. There are billions or trillions of w's, which represent the weights of all these synapses in the neural network. And there's a very small number of y's, of outputs that that network has. "Bird" is only four letters, right? So let's pretend that this is just a simple formula, x "x" w = y. I'm putting the times in scare quotes because what's really going on there, of course, is a very complicated series of mathematical operations.

That's one equation. There are three variables. And we all know that if you have one equation, you can solve one variable by knowing the other two things. So the problem of inference, that is, figuring out that the picture of a bird is a bird, is this one: it's where y is the unknown and w and x are known. You know the neural network, you know the pixels. As you can see, that's actually a relatively straightforward problem. You multiply two times three and you're done. I'll show you an artificial neural network that we've built recently, doing exactly that.

This is running in real time on a mobile phone, and that's, of course, amazing in its own right, that mobile phones can do so many billions and trillions of operations per second. What you're looking at is a phone looking at one after another picture of a bird, and actually not only saying, "Yes, it's a bird," but identifying the species of bird with a network of this sort. So in that picture, the x and the w are known, and the y is the unknown. I'm glossing over the very difficult part, of course, which is how on earth do we figure out the w, the brain that can do such a thing? How would we ever learn such a model?

So this process of learning, of solving for w, if we were doing this with the simple equation in which we think about these as numbers, we know exactly how to do that: 6 = 2 x w, well, we divide by two and we're done. The problem is with this operator. So, division—we've used division because it's the inverse to multiplication, but as I've just said, the multiplication is a bit of a lie here. This is a very, very complicated, very non-linear operation; it has no inverse. So we have to figure out a way to solve the equation without a division operator. And the way to do that is fairly straightforward. You just say, "Well, let's play a little algebra trick," and move the six over to the right-hand side of the equation. Now, we're still using multiplication. And that zero—let's think about it as an error. In other words, if we've solved for w the right way, then the error will be zero. And if we haven't gotten it quite right, the error will be greater than zero.

So now we can just take guesses to minimize the error, and that's the sort of thing computers are very good at. So you've taken an initial guess: what if w = 0? Well, then the error is 6. What if w = 1? The error is 4. And then the computer can sort of play Marco Polo, and drive down the error close to zero. As it does that, it's getting successive approximations to w. Typically, it never quite gets there, but after about a dozen steps, we're up to w = 2.999, which is close enough. And this is the learning process.

So remember that what's been going on here is that we've been taking a lot of known x's and known y's and solving for the w in the middle through an iterative process. It's exactly the same way that we do our own learning. We have many, many images as babies and we get told, "This is a bird; this is not a bird." And over time, through iteration, we solve for w, we solve for those neural connections.

So, now we've held x and w fixed to solve for y; that's everyday, fast perception. We figure out how we can solve for w, that's learning, which is a lot harder, because we need to do error minimization, using a lot of training examples.

And about a year ago, Alex Mordvintsev, from our team, he decided to experiment with what happens if we try solving for x, given a known w and a known y. In other words, you know that it's a bird, and you already have your neural network that you've trained on birds, but what is the picture of a bird? It turns out that by using exactly the same error-minimization procedure, one can do that with the network trained to recognize birds, and the result turns out to be...a picture of birds. So this is a picture of birds generated entirely by a neural network that was trained to recognize birds, just by solving for x rather than solving for y, and doing that iteratively.

Here's another fun example. This was a work made by Mike Tyka in our group, which he calls "Animal Parade." It reminds me a little bit of William Kentridge's artworks, in which he makes sketches, rubs them out, makes sketches, rubs them out, and creates a movie this way. In this case, what Mike is doing is varying y over the space of different animals, in a network designed to recognize and distinguish different animals from each other. And you get this kind of strange, Escher-like morph from one animal to another.

Here he and Alex together have tried reducing the y's to a space of only two dimensions, thereby making a map out of the space of all things recognized by this network. And then doing this kind of synthesis or generation of imagery over that entire surface, varying y over the surface, you make a kind of map—a visual map of all the things the network knows how to recognize. The animals are all here; "armadillo" is right in that spot.

You can do this with other kinds of networks as well. This is a network designed to recognize faces, to distinguish one face from another. And here, we're putting in a y that says, "me," my own face parameters. And when this thing solves for x, it generates this rather crazy, kind of cubist, surreal, psychedelic picture of me from multiple points of view at once. And the reason it looks like multiple points of view at once is because that network is designed to get rid of the ambiguity of a face being in one pose or another pose, being looked at with one kind of lighting, another kind of lighting. So when you do this sort of reconstruction, if you don't use some sort of guide image or guide statistics, then you'll get a sort of confusion of different points of view, because it's ambiguous. This is what happens if Alex uses his own face as a guide image during that optimization process to reconstruct my own face. So you can see it's not perfect. There's still quite a lot of work to do on how we optimize that optimization process. But you start to get something more like a coherent face, rendered using my own face as a guide.

You don't have to start with a blank canvas or with white noise. When you're solving for x, you can begin with an x, that is itself already some other image. That's what this little demonstration is. This is a network that is designed to categorize all sorts of different objects—man-made structures, animals... And here we're starting with just a picture of clouds, and as we optimize, basically, this network is figuring out what it sees in the clouds. And the more time you spend looking at this, the more things you also will see in the clouds. You could also use the face network to hallucinate into this, and you get some pretty crazy stuff.

Or, Mike has done some other experiments in which he takes that cloud image, hallucinates, zooms, hallucinates, zooms hallucinates, zooms. And in this way, you can get a sort of fugue state of the network, I suppose, or a sort of free association, in which the network is eating its own tail. So every image is now the basis for, "What do I think I see next? What do I think I see next? What do I think I see next?"

I showed this for the first time in public to a group at a lecture in Seattle called "Higher Education"—this was right after marijuana was legalized.

So I'd like to finish up quickly by just noting that this technology is not constrained. I've shown you purely visual examples because they're really fun to look at. It's not a purely visual technology. Our artist collaborator, Ross Goodwin, has done experiments involving a camera that takes a picture, and then a computer in his backpack writes a poem using neural networks, based on the contents of the image. And that poetry neural network has been trained on a large corpus of 20th-century poetry. And the poetry is, you know, I think, kind of not bad, actually.

In closing, I think that per Michelangelo, I think he was right; perception and creativity are very intimately connected. What we've just seen are neural networks that are entirely trained to discriminate, or to recognize different things in the world, able to be run in reverse, to generate. One of the things that suggests to me is not only that Michelangelo really did see the sculpture in the blocks of stone, but that any creature, any being, any alien that is able to do perceptual acts of that sort is also able to create because it's exactly the same machinery that's used in both cases.

Also, I think that perception and creativity are by no means uniquely human. We start to have computer models that can do exactly these sorts of things. And that ought to be unsurprising; the brain is computational.

And finally, computing began as an exercise in designing intelligent machinery. It was very much modeled after the idea of how could we make machines intelligent. And we finally are starting to fulfill now some of the promises of those early pioneers, of Turing and von Neumann and McCulloch and Pitts. And I think that computing is not just about accounting or playing Candy Crush or something. From the beginning, we modeled them after our minds. And they give us both the ability to understand our own minds better and to extend them.

Thank you very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!