下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Vikram Sharma:量子力學如何強化加密功能」- How Quantum Physics Can Make Encryption Stronger


框選或點兩下字幕可以直接查字典喔!

Recently, we've seen the effects of cyber attacks on the business world. Data breaches at companies like JP Morgan, Yahoo, Home Depot and Target have caused losses of hundreds of millions and in some cases, billions of dollars. It wouldn't take many large attacks to ravage the world economy. And the public sector has not been immune, either. In 2012 to 2014, there was a significant data breach at the US Office of Personnel Management. Security clearance and fingerprint data was compromised, affecting 22 million employees. And you may have heard of the attempt by state-sponsored hackers to use stolen data to influence election outcomes in a number of countries. Two recent examples are the compromise of a large amount of data from the Bundestag, the national Parliament of Germany, and the theft of emails from the US Democratic National Committee. The cyber threat is now affecting our democratic processes. And it's likely to get worse.

As computer technology is becoming more powerful, the systems we use to protect our data are becoming more vulnerable. Adding to the concern is a new type of computing technology, called quantum computing, which leverages microscopic properties of nature to deliver unimaginable increases in computational power. It's so powerful that it will crack many of the encryption systems that we use today.

So is the situation hopeless? Should we start packing our digital survival gear and prepare for an upcoming data apocalypse? I would say, not yet. Quantum computing is still in the labs, and it will take a few years until it's put to practical applications. More important, there have been major breakthroughs in the field of encryption. For me, this is a particularly exciting time in the history of secure communications. About 15 years ago, when I learned of our new-found ability to create quantum effects that don't exist in nature, I was excited. The idea of applying the fundamental laws of physics to make encryption stronger really intrigued me. Today, a select groups of companies and labs around the world, including mine, are maturing this technology for practical applications. That's right. We are now preparing to fight quantum with quantum.

So how does this all work? Well, first, let's take a quick tour of the world of encryption. For that, you'll need a briefcase, some important documents that you want to send your friend, James Bond, and a lock to keep it all safe. Because the documents are top secret, we're going to use an advanced briefcase. It has a special combination lock which, when closed, converts all the text in the documents to random numbers. So you put your documents inside, close the lock—at which point in time the documents get converted to random numbers—and you send the briefcase to James. While it's on its way, you call him to give him the code. When he gets the briefcase, he enters the code, the documents get unscrambled, and voila, you've just sent an encoded message to James Bond.

A fun example, but it does illustrate three things important for encryption. The code—we call this an encryption key. You can think of it as a password. The call to James to give him the code for the combination lock. We call this key exchange. This is how you ensure you get the encryption key securely to the right place. And the lock, which encodes and decodes the document. We call this an encryption algorithm. Using the key, it encodes the text in the documents to random numbers. A good algorithm will encode in such a way that without the key it's very difficult to unscramble.

What makes encryption so important is that if someone were to capture the briefcase and cut it open without the encryption key and the encryption algorithm, they wouldn't be able to read the documents. They would look like nothing more than a bunch of random numbers. Most security systems rely on a secure method for key exchange to communicate the encryption key to the right place. However, rapid increases in computational power are putting at risk a number of the key exchange methods we have today.

Consider one of the very widely used systems today—RSA. When it was invented, in 1977, it was estimated that it would take 40 quadrillion years to break a 426-bit RSA key. In 1994, just 17 years later, the code was broken. As computers have become more and more powerful, we've had to use larger and larger codes. Today we routinely use 2048 or 4096 bits. As you can see, code makers and breakers are engaged in an ongoing battle to outwit each other. And when quantum computers arrive in the next 10 to 15 years, they will even more rapidly crack the complex mathematics that underlies many of our encryption systems today. Indeed, the quantum computer is likely to turn our present security castle into a mere house of cards. We have to find a way to defend our castle.

There's been a growing body of research in recent years looking at using quantum effects to make encryption stronger. And there have been some exciting breakthroughs. Remember those three things important for encryption—high-quality keys, secure key exchange and a strong algorithm? Well, advances in science and engineering are putting two of those three elements at risk. First of all, those keys. Random numbers are the foundational building blocks of encryption keys. But today, they're not truly random. Currently, we construct encryption keys from sequences of random numbers generated from software, so-called pseudo-random numbers. Numbers generated by a program or a mathematical recipe will have some, perhaps subtle, pattern to them. The less random the numbers are, or in scientific terms, the less entropy they contain, the easier they are to predict.

Recently, several casinos have been victims of a creative attack. The output of slot machines was recorded over a period of time and then analyzed. This allowed the cyber criminals to reverse engineer the pseudo-random number generator behind the spinning wheels. And allowed them, with high accuracy, to predict the spins of the wheels, enabling them to make big financial gains.

Similar risks apply to encryption keys. So having a true random number generator is essential for secure encryption. For years, researchers have been looking at building true random number generators. But most designs to date are either not random enough, fast enough or aren't easily repeatable. But the quantum world is truly random. So it makes sense to take advantage of this intrinsic randomness. Devices that can measure quantum effects can produce an endless stream of random numbers at high speed. Foiling all those would-be casino criminals.

A select group of universities and companies around the world are focused on building true random number generators. At my company, our quantum random number generator started life on a two meter by one meter optic table. We were then able to reduce it to a server-size box. Today, it's miniaturized into a PCI card that plugs into a standard computer. This is the world's fastest true random number generator. It measures quantum effects to produce a billion random numbers per second. And it's in use today to improve security at cloud providers, banks and government agencies around the world.

But even with a true random number generator, we've still got the second big cyber threat: the problem of secure key exchange. Current key exchange techniques will not stand up to a quantum computer. The quantum solution to this problem is called quantum key distribution or QKD, which leverages a fundamental, counterintuitive characteristic of quantum mechanics. The very act of looking at a quantum particle changes it. Let me give you an example of how this works.

Consider again exchanging the code for the lock with James Bond. Except this time, instead of a call to give James the code, we're going to use quantum effects on a laser to carry the code and send it over standard optic fiber to James. We assume that Dr. No is trying to hack the exchange. Luckily, Dr. No's attempt to intercept the quantum keys while in transit will leave fingerprints that James and you can detect. This allows those intercepted keys to be discarded. The keys which are then retained can be used to provide very strong data protection. And because the security is based on the fundamental laws of physics, a quantum computer, or indeed any future supercomputer will not be able to break it.

My team and I are collaborating with leading universities and the defense sector to mature this exciting technology into the next generation of security products. The internet of things is heralding a hyperconnected era with 25 to 30 billion connected devices forecast by 2020. For the correct functioning of our society in an IoT world, trust in the systems that support these connected devices is vital. We're betting that quantum technologies will be essential in providing this trust, enabling us to fully benefit from the amazing innovations that are going to so enrich our lives.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!