使用chrome瀏覽器,輕鬆學英文。

如有任何問題,歡迎聯絡我們

希平方
攻其不背
App 開放下載中
希平方
攻其不背
App 開放下載中
免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!

「Kevin Kelly:科技如何演化」- How Technology Evolves


框選或點兩下字幕可以直接查字典喔!

I don't know about you, but I haven't quite figured out exactly what technology means in my life. I've spent the past year thinking about what it really should be about. Should I be pro-technology? Should I embrace it full arms? Should I be wary? Like you, I'm very tempted by the latest thing. But at the other hand, a couple of years ago, I gave up all of my possessions, sold all my technology—except for a bicycle—and rode across 3,000 miles on the U.S. back roads under the power of my one body, fueled mostly by Twinkies and junk food.

And I've since then tried to keep technology at arm's length in many ways, so it doesn't master my life. At the same time, I run a website on cool tools, where I issue a daily obsession of the latest things in technology. So I'm still perplexed about what the true meaning of technology is as it relates to humanity, as it relates to nature, as it relates to the spiritual. And I'm not even sure we know what technology is. And one definition of technology is that which is first recorded. This is the first example of the modern use of technology that I can find. It was the suggested syllabus for dealing with the Applied Arts and Science at Cambridge University in 1829.

Before that, obviously, technology didn't exist. But obviously it did. I like one of the definitions that Alan Kay has for technology. He says, "Technology is anything that was invented after you were born."

So it sums up a lot of what we're talking about. Danny Hillis actually has an update on that—he says, "Technology is anything that doesn't quite work yet."—which also, I think, gets into a little bit of our current idea. But I was interested in another definition of technology. Something, again, that went back to something more fundamental. Something that was deeper. And as I struggled to understand that, I came up with a way of framing the question that seemed to work for me in my investigations. And I'm, this morning, going to talk about this for the first time. So this is a very rough attempt to think out loud.

The question that I came up with was this question: What does technology want? And by that, I don't mean, does it want chocolate or vanilla? By what it wants, I mean, what are its inherent trends and biases? What are its tendencies over time? One way to think about this is thinking about biological organisms, which we've heard a lot about. And the trick that Richard Dawkins does, which is to say, to look at them as simply as genes, as vehicles for genes, so he's saying, what do genes want? The selfish gene. And I'm applying a similar trick to say, what if we looked at the universe in our culture through the eyes of technology? What does technology want? Obviously, this is an incomplete question, just as looking at an organism as only a gene is an incomplete way of looking at it, but it's still very, very productive. So I'm attempting to say, if we take technology's view of the world, what does it want? And I think once we ask that question, we have to go back, actually, to life. Because obviously, if we keep extending the origins of technology far back, I think we come back to life at some point. So that's where I want to begin my little exploration, is in life.

And like you heard from the previous speakers, we don't really know what life there is on Earth right now. We have really no idea. Craig Venter's tremendous and brilliant attempt to DNA sequence things in the ocean is great. Brian Farrell's work is all part of this agenda to try and actually discover all the species on Earth. And one of the things that we should do is just make a grid of the globe and randomly go and inspect all the places that the grid intersects, just to see what's on life. And if we did that with our little Martian probe, which we have not done on Earth, we would begin to see some incredible species.

This is not on another planet. These are things that are hidden away on our planet. This is an ant that stores its colleagues' honey in its abdomen. Each one of these organisms that we've described—that you've seen from Jamie and others, these magnificent things—what they're doing, each one of them, is they're hacking the rules of life. I can't think of a single general principle of biology that does not have an exception somewhere by some organism. Every single thing that we can think of—and if you heard Olivia's talk about the sexual habits, you'll realize that there isn't anything we can say that's true for all life, because every single one of them is hacking something about it. This is a solar-powered sea slug. It's a nudibranch that has incorporated chloroplast inside it to drive its energy. This is another version of that. This is a sea dragon, and the one on the bottom, the blue one, is a juvenile that has not yet swallowed the acid. It's not yet taken in the brown-green algae pond scum into its body to give it energy.

These are hacks, and if we looked at the general shape of the approaches to hacking life, there are, current consensus, six kingdoms.Six different broad approaches: the plants, the animals, the fungi, the protests—the little things—the bacteria and the Archaea bacteria—the Archaeas. Those are the general approaches to life. That's one way to look at life on Earth today.

But a more interesting way, the current way to take the long view, is to look at it in an evolutionary perspective. And here, we have a view of evolution where rather than having evolution go over the linear time, we have it coming out from the center. So in the center is the most primitive, and this is a genealogical chart of all life on earth. This is all the same six kingdoms. You see 4,000 representative species, and you can see where we are. But what I like about this is it shows that every living organism on Earth today is equally evolved. Those fungi and bacteria are as highly evolved as humans. They've been around just as long and gone through just the same kind of trial and error to get here. But we see that each one of these is actually hacking, and has a different way of finding out how to do life.

And if we take the long-term trends of life, if we begin to say, what does evolution want? There's several things that we see. One of the things about evolution is that nowhere on Earth have we ever been where we don't find life. We find life at the bottom of every long-term, long-distance drilling core into the center of rock that we bring up—and there's bacteria in the pores of that rock. And wherever life is, it never retreats. It's ubiquitous. And it's becoming—wants to be more. More and more of the inert matter of the globe is being touched and animated by life.

The second thing is as we see diversity, we also see specialization. We see the movement from a general-purpose cell to the more specific and specialized. And we see a drift towards complexity that's very intuitive. And actually, we have current data that does show that there is an actual drift towards complexity over time. And the last thing, I bring back this nudibranch, is one of the things we see about life is that it moves from the inner to increasing sociability. And by that it means that there is more and more of life whose entire environment is other life. Like those chloroplast cells—they're completely surrounded by other life. They never touch the inner matter. There is more and more co-evolution. And so the general, long-term trends of evolution are roughly these five: ubiquity, diversity, specialization, complexity and socialization. Now, I took that and said, OK, what are the long-term trends in technology?

And it began my question is what does technology want? And so, remarkably, I discovered that there's also a drift toward specialization. That we see there's a general hammer, and hammers become more and more specific over time. There's obviously diversity. Huge numbers of things. This is all the contents of a Japanese home. I actually had my daughter—gave her a tally counter, and I gave her an assignment last summer to go around and count the number of species of technology in our household. And it came up with 6,000 different species of products. I did some research and found out that the King of England, Henry VIII, had only about 7,000 items in his household. And he was the King of England, and that was the entire wealth of England at the time. So we're seeing huge numbers of diversity in the kinds of things.

This is a scene from Star Wars where the 3PO comes out and he sees machines making machines. How depraved! Well, this is actually what we're headed towards: world machines. And the technology is only being thrown out by other technologies. Most machines will only ever be in contact with other technology and not non-technology, or even life.

And thirdly, the idea that machines are becoming biological and complex is at this point a cliche. And I'm happy to say I was partly responsible for that cliche that machines are becoming biological, but that's pretty evident. So the major trends in technology evolution actually are the same as in biological evolution. The same drives that we see towards ubiquity, towards diversity, towards socialization, towards complexity. That is maybe not a big surprise because if we map out, say, the evolution of armor, you can actually follow a sort of an evolutionary-type cladistic tree. I suggest that, in fact, technology is the seventh kingdom of life. That its operations and how it works is so similar that we can think of it as the seventh kingdom. And so it would be sort of approximately up there, coming out of the animal kingdom. And if we were to do that, we would find out—we could actually approach technology in this way.

This is Niles Eldredge. He was the co-developer with Stephen Jay Gould of the theory of punctuated equilibrium. But as a sideline, he happens to collect cornets. He has one of the world's largest collections—about 500 of them. And he has decided to treat them as if they were trilobites, or snails, and to do a morphological analysis, and try to derive their genealogical history over time. This is his chart, which is not quite published yet. But the most interesting aspect about this is that if you look at those red lines at the bottom, those indicate, basically, a parentage of a type of cornet that was no longer made. That does not happen in biology. When something is extinct, you can't have it as your parent. But that does happen in technology. And it turns out that that's so distinctive that you can actually look at this tree, and you can actually use it to determine that this is a technological system versus a biological system.

In fact, this idea of resurrecting the whole idea is so important that I began to think about what happens with old technology. And it turns out that, in fact, technologies don't die. So I suggested this to an historian of science, and he said, "Well, what about, you know, come on, what about steam cars? They're not around anymore." Well, actually they are. In fact, they're so around that you can buy new parts for a Stanley steam automobile. And this is a website of a guy who's selling brand new parts for the Stanley automobile. And the thing that I liked is sort of this one-click, add-to-your-cart button for buying steam valves. I mean, it was just—it was really there. And so I began to think about, well, maybe that's just a random sample. Maybe I should do this sort of in a more conservative way.

So I took the great big 1895 Montgomery Ward's catalog and I randomly went through it. And I took a page—not quite a random page—I took a page that was actually more difficult than others because lots of the pages are filled with things that are still being made. But I took this page and I said, how many of these things are still being made? And not antiques. I want to know how many of these things are still in production. And the answer is all of them. All of them are still being produced. So you've got corn shellers. I don't know who needs a corn sheller. Be it corn shellers—you've got ploughs; you've got fan mills; all these thing—and these are not, again, antiques. These are—you can order these. You can go to the web and you can buy them now, brand-new made. So in a certain sense, technologies don't die. In fact, you can buy, for 50 bucks, a stone-age knife made exactly the same way that they were made 10,000 years ago. It's short, bone handle, 50 bucks. And in fact, what's important is that this information actually never died out. It's not just that it was resurrected. It's continued all along. And in Papua New Guinea, they were making stone axes until two decades ago, just as a course of practical matters.

Even when we try to get rid of a technology, it's actually very hard. So we've all heard about the Amish giving up cars. We've heard about the Japanese giving up guns. We've heard about this and that. But I actually went back and took what I could find, the examples in history where there have been prohibitions against technology, and then I tried to find out when they came back in, because they always came back in. And it turns out that the time, the duration of when they were outlawed and prohibited, is decreasing over time. And that basically, you can delay technology, but you can't kill it. So this makes sense, because in a certain sense what culture is, is culture is the accumulation of ideas. That's what it's for. It's so that ideas don't die out. And when we take that, we take this idea of what culture is doing and add it to what the long-term trajectory—again, in life's evolution—we find that each case—each of the major transitions in life—what they're really about is accelerating and changing the way in which evolution happens. They're actually changing the way in which ideas are generated.

So all these steps in evolution are increasing, basically, the evolution of evolvability. So what's happening over time in life is that the ways in which you generate these new ideas, these new hacks, are increasing.
And the real tricks are ways in which you kind of explore the way of exploring.
And the real tricks are ways in which you kind of explore the way of exploring.
And then what we see in the singularity that prophesized by Kurzweil and others is idea that technology is accelerating evolution, is accelerating the way in which we search for ideas. So if you have life hacking—life means hacking, the game of survival —then evolution is a way to extend the game by changing the rules of the game. And what technology is really about is better ways to evolve. That is what we call an "infinite game." That's the definition of "infinite game." A finite game is play to win, and an infinite game is played to keep playing. And I believe that technology is actually a cosmic force.

The origins of technology was not in 1829, but was actually at the beginning of the Big Bang, and at that moment, the entire huge billions of stars in the universe were compressed. The entire universe was compressed into a little quantum dot, and it was so tight in there, there was no room for any difference at all. That's the definition. There was no temperature. There was no difference whatsoever. And at the Big Bang, what it expanded was the potential for difference. So as it expands and as things expand, what we have is we have the potential for differences, diversity, options, choices, opportunities, possibilities and freedoms. Those are all basically the same thing. And those are the things that technology brings us. That's what technology is bringing us: choices, possibilities, freedoms. That's what it's about. It's this expansion of room to make differences. And so a hammer, when we grab a hammer, that's what we're grabbing. And that's why we continue to grab technology—because we want those things. Those things are good—differences, freedom, choices, possibilities. And each time we make a new opportunity place, we're allowing a platform to make new ones.

And I think it's really important. Because if you can imagine Mozart before the technology of the piano was invented—what a loss to society there would be. Imagine Van Gogh being born before the technologies of cheap oil paints. Imagine Hitchcock before the technologies of film. Somewhere, today, there are millions of young children being born whose technology of self-expression has not yet been invented. We have a moral obligation to invent technology so that every person on the globe has the potential to realize their true difference. We want a trillion zillion species of one individuals. That's what technology really wants.

I'm going to skip through some of the objections because I don't have answers to why there's deforestation. I don't have an answer to the fact that there are seem-to-be-bad technologies. I don't have an answer to how this impacts on our dignity, other than to suggest that maybe the seventh kingdom, because it's so close to what life is about, maybe we can bring it back and have it help us monitor life. Maybe in some ways, the fact that what we're trying to do with technology is find a good home for it. It's a terrible thing to spray DDT on cotton fields, but it's a really good thing to use to eliminate millions of cases of death due to malaria in a small village.

Our humanity is actually defined by technology. All the things that we think that we really like about humanity is being driven by technology. This is the infinite game. That's what we're talking about. You see, technology is a way to evolve the evolution. It's a way to explore possibilities and opportunities and create more. And it's actually a way of playing the game, of playing all the games. That's what technology wants. And so when I think about what technology wants, I think that it has to do with the fact that every person here—and I really believe this—every person here has an assignment. And your assignment is to spend your life discovering what your assignment is. That recursive nature is the infinite game. And if you play that well, you'll have other people involved, so even that game extends and continues even when you're gone. That is the infinite game. And what technology is is the medium in which we play that infinite game. And so I think that we should embrace technology because it is an essential part of our journey in finding out who we are.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!