下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Dimitar Sasselov:我們如何找到大量類地行星」- How We Found Hundreds of Potential Earth-Like Planets

觀看次數:1878  • 

框選或點兩下字幕可以直接查字典喔!

Well, indeed, I'm very, very lucky. My talk essentially got written by three historic events that happened within days of each other in the last two months—seemingly unrelated, but as you will see, actually all having to do with the story I want to tell you today. The first one was actually a funeral—to be more precise, a reburial. On May 22nd, there was a hero's reburial in Frombork, Poland of the 16th-century astronomer who actually changed the world. He did that, literally, by replacing the Earth with the Sun in the center of the Solar System, and then with this simple-looking act, he actually launched a scientific and technological revolution, which many call the Copernican Revolution. Now that was, ironically, and very befittingly, the way we found his grave. As it was the custom of the time, Copernicus was actually simply buried in an unmarked grave, together with 14 others in that cathedral. DNA analysis, one of the hallmarks of the scientific revolution of the last 400 years that he started, was the way we found which set of bones actually belonged to the person who read all those astronomical books which were filled with leftover hair that was Copernicus' hair—obviously not many other people bothered to read these books later on. That match was unambiguous. The DNA matched, and we know that this was indeed Nicolaus Copernicus.

Now, the connection between biology and DNA and life is very tantalizing when you talk about Copernicus because, even back then, his followers very quickly made the logical step to ask: if the Earth is just a planet, then what about planets around other stars? What about the idea of the plurality of the worlds, about life on other planets? In fact, I'm borrowing here from one of those very popular books of the time. And at the time, people actually answered that question positively: "Yes." But there was no evidence. And here begins 400 years of frustration, of unfulfilled dreams—the dreams of Galileo, Giordano Bruno, many others—which never led to the answer of those very basic questions which humanity has asked all the time. "What is life? What is the origin of life? Are we alone?" And that especially happened in the last 10 years, at the end of the 20th century, when the beautiful developments due to molecular biology, understanding the code of life, DNA, all of that seemed to actually put us, not closer, but further apart from answering those basic questions.

Now, the good news. A lot has happened in the last few years, and let's start with the planets. Let's start with the old Copernican question: Are there earths around other stars? And as we already heard, there is a way in which we are trying, and now able, to answer that question. It's a new telescope. Our team, befittingly I think, named it after one of those dreamers of the Copernican time, Johannes Kepler, and that telescope's sole purpose is to go out, find the planets that orbit other stars in our galaxy, and tell us how often do planets like our own Earth happen to be out there. The telescope is actually built similarly to the, well-known to you, Hubble Space Telescope, except it does have an additional lens—a wide-field lens, as you would call it as a photographer. And if, in the next couple of months, you walk out in the early evening and look straight up and place you palm like this, you will actually be looking at the field of the sky where this telescope is searching for planets day and night, without any interruption, for the next four years.

The way we do that, actually, is with a method, which we call the transit method. It's actually mini-eclipses that occur when a planet passes in front of its star. Not all of the planets will be fortuitously oriented for us to be able do that, but if you have a million stars, you'll find enough planets. And as you see on this animation, what Kepler is going to detect is just the dimming of the light from the star. We are not going to see the image of the star and the planet as this. All the stars for Kepler are just points of light. But we learn a lot from that: not only that there is a planet there, but we also learn its size. How much of the light is being dimmed depends on how big the planet is. We learn about its orbit, the period of its orbit and so on. So, what have we learned? Well, let me try to walk you through what we actually see and so you understand the news that I'm here to tell you today.

What Kepler does is discover a lot of candidates, which we then follow up and find as planets, confirm as planets. It basically tells us this is the distribution of planets in size. There are small planets, there are bigger planets, there are big planets, okay. So we count many, many such planets, and they have different sizes. We do that in our solar system. In fact, even back during the ancients, the Solar System in that sense would look on a diagram like this. There will be the smaller planets, and there will be the big planets, even back to the time of Epicurus and then of course Copernicus and his followers. Up until recently, that was the Solar System—four Earth-like planets with small radius, smaller than about two times the size of the Earth—and that was of course Mercury, Venus, Mars, and of course the Earth, and then the two big, giant planets. Then the Copernican Revolution brought in telescopes, and of course three more planets were discovered. Now the total planet number in our solar system was nine. The small planets dominated, and there was a certain harmony to that, which actually Copernicus was very happy to note, and Kepler was one of the big proponents of. So now we have Pluto to join the numbers of small planets. But up until, literally, 15 years ago, that was all we knew about planets. And that's what the frustration was. The Copernican dream was unfulfilled.

Finally, 15 years ago, the technology came to the point where we could discover a planet around another star, and we actually did pretty well. In the next 15 years, almost 500 planets were discovered orbiting other stars, with different methods. Unfortunately, as you can see, there was a very different picture. There was of course an explanation for it: We only see the big planets, so that's why most of those planets are really in the category of "like Jupiter." But you see, we haven't gone very far. We were still back where Copernicus was. We didn't have any evidence whether planets like the Earth are out there. And we do care about planets like the Earth because by now we understood that life as a chemical system really needs a smaller planet with water and with rocks and with a lot of complex chemistry to originate, to emerge, to survive. And we didn't have the evidence for that.

So today, I'm here to actually give you a first glimpse of what the new telescope, Kepler, has been able to tell us in the last few weeks, and, lo and behold, we are back to the harmony and to fulfilling the dreams of Copernicus. You can see here, the small planets dominate the picture. The planets which are marked "like Earth," [are] definitely more than any other planets that we see. And now for the first time, we can say that. There is a lot more work we need to do with this. Most of these are candidates. In the next few years we will confirm them. But the statistical result is loud and clear. And the statistical result is that planets like our own Earth are out there. Our own Milky Way Galaxy is rich in this kind of planets.

So the question is: what do we do next? Well, first of all, we can study them now that we know where they are. And we can find those that we would call habitable, meaning that they have similar conditions to the conditions that we experience here on Earth and where a lot of complex chemistry can happen. Okay? So, we can even put a number to how many of those planets now do we expect our own Milky Way Galaxy harbors. And the number, as you might expect, is pretty staggering. It's about 100 million such planets. That's great news. Why? Because with our own little telescope, just in the next two years, we'll be able to identify at least 60 of them. So that's great because then we can go and study them—remotely, of course—with all the techniques that we already have tested in the past five years. We can find what they're made of, would their atmospheres have water, carbon dioxide, methane. We know and expect that we'll see that.

That's great, but that is not the whole news. That's not why I'm here. Why I'm here is to tell you that the next step is really the exciting part. The one that this step is enabling us to do is coming next. And here comes biology—biology, with its basic question, which still stands unanswered, which is essentially: "If there is life on other planets, do we expect it to be like life on Earth?" And let me immediately tell you here, when I say life, I don't mean "dolce vita," good life, human life. I really mean life on Earth, past and present, from microbes to us humans, in its rich molecular diversity, the way we now understand life on Earth as being a set of molecules and chemical reactions—and we call that, collectively, biochemistry, life as a chemical process, as a chemical phenomenon.

So the question is: is that chemical phenomenon universal, or is it something which depends on the planet? Is it like gravity, which is the same everywhere in the universe, or there would be all kinds of different biochemistries wherever we find them? We need to know what we are looking for when we try to do that. And that's a very basic question, which we don't know the answer to, but which we can try—and we are trying—to answer in the lab. We don't need to go to space to answer that question. And so, that's what we are trying to do. And that's what many people now are trying to do. And a lot of the good news comes from that part of the bridge that we are trying to build as well.

So this is one example that I want to show you here. When we think of what is necessary for the phenomenon that we call life, we think of compartmentalization, keeping the molecules which are important for life in a membrane, isolated from the rest of the environment, but yet, in an environment in which they actually could originate together. And in one of our labs, Jack Szostak's labs, it was a series of experiments in the last four years that showed that the environments—which are very common on planets, on certain types of planets like the Earth, where you have some liquid water and some clays—you actually end up with naturally available molecules which spontaneously form bubbles. But those bubbles have membranes very similar to the membrane of every cell of every living thing on Earth looks like, like this. And they really help molecules, like nucleic acids, like RNA and DNA, stay inside, develop, change, divide and do some of the processes that we call life.

Now this is just an example to tell you the pathway in which we are trying to answer that bigger question about the universality of the phenomenon. And in a sense, you can think of that work that people are starting to do now around the world as building a bridge, building a bridge from two sides of the river. On one hand, on the left bank of the river, are the people like me who study those planets and try to define the environments. We don't want to go blind because there's too many possibilities, and there is not too much lab, and there is not enough human time to actually to do all the experiments. So that's what we are building from the left side of the river. From the right bank of the river are the experiments in the lab that I just showed you, where we actually tried that, and it feeds back and forth, and we hope to meet in the middle one day.

So why should you care about that? Why am I trying to sell you a half-built bridge? Am I that charming? Well, there are many reasons, and you heard some of them in the short talk today. This understanding of chemistry actually can help us with our daily lives. But there is something more profound here, something deeper. And that deeper, underlying point is that science is in the process of redefining life as we know it. And that is going to change our worldview in a profound way—not in a dissimilar way as 400 years ago, Copernicus' act did, by changing the way we view space and time. Now it's about something else, but it's equally profound. And half the time, what's happened is it's related this kind of sense of insignificance to humankind, to the Earth in a bigger space. And the more we learn, the more that was reinforced. You've all learned that in school—how small the Earth is compared to the immense universe. And the bigger the telescope, the bigger that universe becomes. And look at this image of the tiny, blue dot. This pixel is the Earth. It is the Earth as we know it. It is seen from, in this case, from outside the orbit of Saturn. But it's really tiny. We know that. Let's think of life as that entire planet because, in a sense, it is. The biosphere is the size of the Earth. Life on Earth is the size of the Earth. And let's compare it to the rest of the world in spatial terms. What if that Copernican insignificance was actually all wrong? Would that make us more responsible for what is happening today? Let's actually try that.

So in space, the Earth is very small. Can you imagine how small it is? Let me try it. Okay, let's say this is the size of the observable universe, with all the galaxies, with all the stars, okay, from here to here. Do you know what the size of life in this necktie will be? It will be the size of a single, small atom. It is unimaginably small. We can't imagine it. I mean look, you can see the necktie, but you can't even imagine seeing the size of a little, small atom. But that's not the whole story, you see. The universe and life are both in space and time. If that was the age of the universe, then this is the age of life on Earth. Think about those oldest living things on Earth, but in a cosmic proportion. This is not insignificant. This is very significant. So life might be insignificant in size, but it is not insignificant in time. Life and the universe compare to each other like a child and a parent, parent and offspring.

So what does this tell us? This tells us that that insignificance paradigm that we somehow got to learn from the Copernican principle, it's all wrong. There is immense, powerful potential in life in this universe—especially now that we know that places like the Earth are common. And that potential, that powerful potential, is also our potential, of you and me. And if we are to be stewards of our planet Earth and its biosphere, we'd better understand the cosmic significance and do something about it. And the good news is we can actually, indeed do it. And let's do it. Let's start this new revolution at the tail end of the old one, with synthetic biology being the way to transform both our environment and our future. And let's hope that we can build this bridge together and meet in the middle. Thank you very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!