下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Vijay Kumar:會飛...而且還會彼此合作的機器人誕生」- Robots That Fly...and Cooperate

觀看次數:2724  • 

框選或點兩下字幕可以直接查字典喔!

Good morning. I'm here today to talk about autonomous flying beach balls.

No, agile aerial robots like this one. I'd like to tell you a little bit about the challenges in building these, and some of the terrific opportunities for applying this technology. So these robots are related to unmanned aerial vehicles. However, the vehicles you see here are big. They weigh thousands of pounds, are not by any means agile. They're not even autonomous. In fact, many of these vehicles are operated by flight crews that can include multiple pilots, operators of sensors, and mission coordinators.

What we're interested in is developing robots like this—and here are two other pictures—of robots that you can buy off the shelf. So these are helicopters with four rotors, and they're roughly a meter or so in scale, and weigh several pounds. And so we retrofit these with sensors and processors, and these robots can fly indoors. Without GPS.

The robot I'm holding in my hand is this one, and it's been created by two students, Alex and Daniel. So this weighs a little more than a tenth of a pound. It consumes about 15 watts of power. And as you can see, it's about eight inches in diameter. So let me give you just a very quick tutorial on how these robots work.

So it has four rotors. If you spin these rotors at the same speed, the robot hovers. If you increase the speed of each of these rotors, then the robot flies up, it accelerates up. Of course, if the robot were tilted, inclined to the horizontal, then it would accelerate in this direction. So to get it to tilt, there's one of two ways of doing it. So in this picture, you see that rotor four is spinning faster and rotor two is spinning slower. And when that happens, there's a moment that causes this robot to roll. And the other way around, if you increase the speed of rotor three and decrease the speed of rotor one, then the robot pitches forward.

And then finally, if you spin opposite pairs of rotors faster than the other pair, then the robot yaws about the vertical axis. So an on-board processor essentially looks at what motions need to be executed and combines these motions, and figures out what commands to send to the motors—600 times a second. That's basically how this thing operates.

So one of the advantages of this design is when you scale things down, the robot naturally becomes agile. So here, R is the characteristic length of the robot. It's actually half the diameter. And there are lots of physical parameters that change as you reduce R. The one that's most important is the inertia, or the resistance to motion. So it turns out the inertia, which governs angular motion, scales as a fifth power of R. So the smaller you make R, the more dramatically the inertia reduces. So as a result, the angular acceleration, denoted by the Greek letter alpha here, goes as 1 over R. It's inversely proportional to R. The smaller you make it, the more quickly you can turn.

So this should be clear in these videos. On the bottom right, you see a robot performing a 360-degree flip in less than half a second. Multiple flips, a little more time. So here the processes on board are getting feedback from accelerometers and gyros on board, and calculating, like I said before, commands at 600 times a second, to stabilize this robot. So on the left, you see Daniel throwing this robot up into the air, and it shows you how robust the control is. No matter how you throw it, the robot recovers and comes back to him.

So why build robots like this? Well, robots like this have many applications. You can send them inside buildings like this, as first responders to look for intruders, maybe look for biochemical leaks, gaseous leaks. You can also use them for applications like construction. So here are robots carrying beams, columns and assembling cube-like structures. I'll tell you a little bit more about this. The robots can be used for transporting cargo. So one of the problems with these small robots is their payload-carrying capacity. So you might want to have multiple robots carry payloads. This is a picture of a recent experiment we did—actually not so recent anymore—in Sendai, shortly after the earthquake. So robots like this could be sent into collapsed buildings, to assess the damage after natural disasters, or sent into reactor buildings, to map radiation levels.

So one fundamental problem that the robots have to solve if they are to be autonomous, is essentially figuring out how to get from point A to point B. So this gets a little challenging, because the dynamics of this robot are quite complicated. In fact, they live in a 12-dimensional space. So we use a little trick. We take this curved 12-dimensional space, and transform it into a flat, four-dimensional space. And that four-dimensional space consists of X, Y, Z, and then the yaw angle.

And so what the robot does, is it plans what we call a minimum-snap trajectory. So to remind you of physics: You have position, derivative, velocity; then acceleration; and then comes jerk, and then comes snap. So this robot minimizes snap. So what that effectively does, is produce a smooth and graceful motion. And it does that avoiding obstacles. So these minimum-snap trajectories in this flat space are then transformed back into this complicated 12-dimensional space, which the robot must do for control and then execution.

So let me show you some examples of what these minimum-snap trajectories look like. And in the first video, you'll see the robot going from point A to point B, through an intermediate point.

So the robot is obviously capable of executing any curve trajectory. So these are circular trajectories, where the robot pulls about two G's. Here you have overhead motion capture cameras on the top that tell the robot where it is 100 times a second. It also tells the robot where these obstacles are. And the obstacles can be moving. And here, you'll see Daniel throw this hoop into the air, while the robot is calculating the position of the hoop, and trying to figure out how to best go through the hoop. So as an academic, we're always trained to be able to jump through hoops to raise funding for our labs, and we get our robots to do that.

So another thing the robot can do is it remembers pieces of trajectory that it learns or is pre-programmed. So here, you see the robot combining a motion that builds up momentum, and then changes its orientation and then recovers. So it has to do this because this gap in the window is only slightly larger than the width of the robot. So just like a diver stands on a springboard and then jumps off it to gain momentum, and then does this pirouette, this two and a half somersault through and then gracefully recovers, this robot is basically doing that. So it knows how to combine little bits and pieces of trajectories to do these fairly difficult tasks.

So I want change gears. So one of the disadvantages of these small robots is its size. And I told you earlier that we may want to employ lots and lots of robots to overcome the limitations of size. So one difficulty is: How do you coordinate lots of these robots? And so here, we looked to nature. So I want to show you a clip of Aphaenogaster desert ants, in Professor Stephen Pratt's lab, carrying an object. So this is actually a piece of fig. Actually you take any object coated with fig juice, and the ants will carry it back to the nest. So these ants don't have any central coordinator. They sense their neighbors. There's no explicit communication. But because they sense the neighbors and because they sense the object, they have implicit coordination across the group.

So this is the kind of coordination we want our robots to have. So when we have a robot which is surrounded by neighbors—and let's look at robot I and robot J—what we want the robots to do, is to monitor the separation between them, as they fly in formation. And then you want to make sure that this separation is within acceptable levels. So again, the robots monitor this error and calculate the control commands 100 times a second, which then translates into motor commands, 600 times a second. So this also has to be done in a decentralized way. Again, if you have lots and lots of robots, it's impossible to coordinate all this information centrally fast enough in order for the robots to accomplish the task. Plus, the robots have to base their actions only on local information—what they sense from their neighbors. And then finally, we insist that the robots be agnostic to who their neighbors are. So this is what we call anonymity.
So what I want to show you next is a video of 20 of these little robots, flying in formation. They're monitoring their neighbors' positions. They're maintaining formation. The formations can change. They can be planar formations, they can be three-dimensional formations. As you can see here, they collapse from a three-dimensional formation into planar formation. And to fly through obstacles, they can adapt the formations on the fly. So again, these robots come really close together. As you can see in this figure-eight flight, they come within inches of each other. And despite the aerodynamic interactions with these propeller blades, they're able to maintain stable flight.

So once you know how to fly in formation, you can actually pick up objects cooperatively. So this just shows that we can double, triple, quadruple the robots' strength, by just getting them to team with neighbors, as you can see here. One of the disadvantages of doing that is, as you scale things up—so if you have lots of robots carrying the same thing, you're essentially increasing the inertia, and therefore you pay a price; they're not as agile. But you do gain in terms of payload-carrying capacity.

Another application I want to show you—again, this is in our lab. This is work done by Quentin Lindsey, who's a graduate student. So his algorithm essentially tells these robots how to autonomously build cubic structures from truss-like elements. So his algorithm tells the robot what part to pick up, when, and where to place it. So in this video you see—and it's sped up 10, 14 times—you see three different structures being built by these robots. And again, everything is autonomous, and all Quentin has to do is to give them a blueprint of the design that he wants to build.

So all these experiments you've seen thus far, all these demonstrations, have been done with the help of motion-capture systems. So what happens when you leave your lab, and you go outside into the real world? And what if there's no GPS? So this robot is actually equipped with a camera, and a laser rangefinder, laser scanner. And it uses these sensors to build a map of the environment. What that map consists of are features—like doorways, windows, people, furniture—and it then figures out where its position is, with respect to the features. So there is no global coordinate system. The coordinate system is defined based on the robot, where it is and what it's looking at. And it navigates with respect to those features.

So I want to show you a clip of algorithms developed by Frank Shen and Professor Nathan Michael, that shows this robot entering a building for the very first time, and creating this map on the fly. So the robot then figures out what the features are, it builds the map, it figures out where it is with respect to the features, and then estimates its position 100 times a second, allowing us to use the control algorithms that I described to you earlier. So this robot is actually being commanded remotely by Frank, but the robot can also figure out where to go on its own. So suppose I were to send this into a building, and I had no idea what this building looked like. I can ask this robot to go in, create a map, and then come back and tell me what the building looks like. So here, the robot is not only solving the problem of how to go from point A to point B in this map, but it's figuring out what the best point B is at every time. So essentially it knows where to go to look for places that have the least information, and that's how it populates this map.

So I want to leave you with one last application. And there are many applications of this technology. I'm a professor, and we're passionate about education. Robots like this can really change the way we do K-12 education. But we're in Southern California, close to Los Angeles, so I have to conclude with something focused on entertainment. I want to conclude with a music video. I want to introduce the creators, Alex and Daniel, who created this video.

So before I play this video, I want to tell you that they created it in the last three days, after getting a call from Chris. And the robots that play in the video are completely autonomous. You will see nine robots play six different instruments. And of course, it's made exclusively for TED 2012. Let's watch.

The End

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!