使用chrome瀏覽器,輕鬆學英文。

如有任何問題,歡迎聯絡我們

希平方
攻其不背
App 開放下載中
希平方
攻其不背
App 開放下載中
免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!

「Craig Venter:海洋 DNA 採樣」- Sampling the Ocean's DNA


框選或點兩下字幕可以直接查字典喔!

At the break, I was asked by several people about my comments about the aging debate. And this will be my only comment on it. And that is, I understand that optimists greatly outlive pessimists.

What I'm going to tell you about in my 18 minutes is how we're about to switch from reading the genetic code to the first stages of beginning to write the code ourselves. It's only 10 years ago this month when we published the first sequence of a free-living organism, that of haemophilus influenzae. That took a genome project from 13 years down to four months. We can now do that same genome project in the order of two to eight hours. So in the last decade, a large number of genomes have been added: most human pathogens, a couple of plants, several insects and several mammals, including the human genome. Genomics at this stage of the thinking from a little over 10 years ago was, by the end of this year, we might have between three and five genomes sequenced; it's on the order of several hundred. We just got a grant from the Gordon and Betty Moore Foundation to sequence 130 genomes this year, as a side project from environmental organisms. So the rate of reading the genetic code has changed.

But as we look, what's out there, we've barely scratched the surface on what is available on this planet. Most people don't realize it, because they're invisible, but microbes make up about a half of the Earth's biomass, whereas all animals only make up about one one-thousandth of all the biomass. And maybe it's something that people in Oxford don't do very often, but if you ever make it to the sea, and you swallow a mouthful of seawater, keep in mind that each milliliter has about a million bacteria and on the order of 10 million viruses.

Less than 5,000 microbial species have been characterized as of two years ago, and so we decided to do something about it. And we started the Sorcerer II Expedition, where we were, as with great oceanographic expeditions, trying to sample the ocean every 200 miles. We started in Bermuda for our test project, then moved up to Halifax, working down the U.S. East Coast, the Caribbean Sea, the Panama Canal, through to the Galapagos, then across the Pacific, and we're in the process now of working our way across the Indian Ocean. It's very tough duty; we're doing this on a sailing vessel, in part to help excite young people about going into science. The experiments are incredibly simple. We just take seawater and we filter it, and we collect different size organisms on different filters, and then take their DNA back to our lab in Rockville, where we can sequence a hundred million letters of the genetic code every 24 hours. And with doing this, we've made some amazing discoveries.

For example, it was thought that the visual pigments that are in our eyes—there was only one or two organisms in the environment that had these same pigments. It turns out, almost every species in the upper parts of the ocean in warm parts of the world have these same photoreceptors, and use sunlight as the source of their energy and communication. From one site, from one barrel of seawater, we discovered 1.3 million new genes and as many as 50,000 new species.

We've extended this to the air now with a grant from the Sloan Foundation. We're measuring how many viruses and bacteria all of us are breathing in and out every day, particularly on airplanes or closed auditoriums. We filter through some simple apparatuses; we collect on the order of a billion microbes from just a day filtering on top of a building in New York City. And we're in the process of sequencing all that at the present time.

Just on the data collection side, just where we are through the Galapagos, we're finding that almost every 200 miles, we see tremendous diversity in the samples in the ocean. Some of these make logical sense, in terms of different temperature gradients. So this is a satellite photograph based on temperatures—red being warm, blue being cold—and we found there's a tremendous difference between the warm water samples and the cold water samples, in terms of abundant species. The other thing that surprised us quite a bit is these photoreceptors detect different wavelengths of light, and we can predict that based on their amino acid sequence. And these vary tremendously from region to region. Maybe not surprisingly, in the deep ocean, where it's mostly blue, the photoreceptors tend to see blue light. When there's a lot of chlorophyll around, they see a lot of green light. But they vary even more, possibly moving towards infrared and ultraviolet in the extremes.

Just to try and get an assessment of what our gene repertoire was, we assembled all the data—including all of ours thus far from the expedition, which represents more than half of all the gene data on the planet—and it totaled around 29 million genes. And we tried to put these into gene families to see what these discoveries are: Are we just discovering new members of known families, or are we discovering new families? And it turns out we have about 50,000 major gene families, but every new sample we take in the environment adds in a linear fashion to these new families. So we're at the earliest stages of discovery about basic genes, components and life on this planet.

When we look at the so-called evolutionary tree, we're up on the upper right-hand corner with the animals. Of those roughly 29 million genes, we only have around 24,000 in our genome. And if you take all animals together, we probably share less than 30,000 and probably maybe a dozen or more thousand different gene families. I view that these genes are now not only the design components of evolution. And we think in a gene-centric view—maybe going back to Richard Dawkins' ideas—than in a genome-centric view, which are different constructs of these gene components.

Synthetic DNA, the ability to synthesize DNA, has changed at sort of the same pace that DNA sequencing has over the last decade or two, and is getting very rapid and very cheap. Our first thought about synthetic genomics came when we sequenced the second genome back in 1995, and that from mycoplasma genitalium. And we have really nice T-shirts that say, you know, "I heart my genitalium." This is actually just a microorganism. But it has roughly 500 genes. Haemophilus had 1,800 genes. And we simply asked the question, if one species needs 800, another 500, is there a smaller set of genes that might comprise a minimal operating system?

So we started doing transposon mutagenesis. Transposons are just small pieces of DNA that randomly insert in the genetic code. And if they insert in the middle of the gene, they disrupt its function. So we made a map of all the genes that could take transposon insertions and we called those "non-essential genes." But it turns out the environment is very critical for this, and you can only define an essential or non-essential gene based on exactly what's in the environment. We also tried to take a more directly intellectual approach with the genomes of 13 related organisms, and we tried to compare all of those, to see what they had in common. And we got these overlapping circles. And we found only 173 genescommon to all 13 organisms. The pool expanded a little bit if we ignored one intracellular parasite; it expanded even more when we looked at core sets of genes of around 310 or so. So we think that we can expand or contract genomes, depending on your point of view here, to maybe 300 to 400 genes from the minimal of 500.

The only way to prove these ideas was to construct an artificial chromosome with those genes in them, and we had to do this in a cassette-based fashion. We found that synthesizing accurate DNA in large pieces was extremely difficult. Ham Smith and Clyde Hutchison, my colleagues on this, developed an exciting new method that allowed us to synthesize a 5,000-base pair virus in only a two-week period that was 100 percent accurate, in terms of its sequence and its biology. It was a quite exciting experiment—when we just took the synthetic piece of DNA, injected it in the bacteria and all of a sudden, that DNA started driving the production of the virus particles that turned around and then killed the bacteria. This was not the first synthetic virus—a polio virus had been made a year before—but it was only one ten-thousandth as active and it took three years to do. This is a cartoon of the structure of phi X 174. This is a case where the software now builds its own hardware, and that's the notions that we have with biology.

People immediately jump to concerns about biological warfare, and I had recent testimony before a Senate committee, and a special committee the U.S. government has set up to review this area. And I think it's important to keep reality in mind, versus what happens with people's imaginations. Basically, any virus that's been sequenced today—that genome can be made. And people immediately freak out about things about Ebola or smallpox, but the DNA from this organism is not infective. So even if somebody made the smallpox genome, that DNA itself would not cause infections. The real concern that security departments have is designer viruses. And there's only two countries, the U.S. and the former Soviet Union, that had major efforts on trying to create biological warfare agents. If that research is truly discontinued, there should be very little activity on the know-how to make designer viruses in the future.

I think single-cell organisms are possible within two years. And possibly eukaryotic cells, those that we have, are possible within a decade. So we're now making several dozen different constructs, because we can vary the cassettes and the genes that go into this artificial chromosome. The key is, how do you put all of the others? We start with these fragments, and then we have a homologous recombination system that reassembles those into a chromosome.

This is derived from an organism, deinococcus radiodurans, that can take three million rads of radiation and not be killed. It reassembles its genome after this radiation burst in about 12 to 24 hours, after its chromosomes are literally blown apart. This organism is ubiquitous on the planet, and exists perhaps now in outer space due to all our travel there. This is a glass beaker after about half a million rads of radiation. The glass started to burn and crack, while the microbes sitting in the bottom just got happier and happier. Here's an actual picture of what happens: the top of this shows the genome after 1.7 million rads of radiation. The chromosome is literally blown apart. And here's that same DNA automatically reassembled 24 hours later. It's truly stunning that these organisms can do that, and we probably have thousands, if not tens of thousands, of different species on this planet that are capable of doing that.After these genomes are synthesized, the first step is just transplanting them into a cell without a genome.

So we think synthetic cells are going to have tremendous potential, not only for understanding the basis of biology but for hopefully environmental and society issues. For example, from the third organism we sequenced, Methanococcus jannaschii—it lives in boiling water temperatures; its energy source is hydrogen and all its carbon comes from CO2 it captures back from the environment. So we know lots of different pathways, thousands of different organisms now that live off of CO2, and can capture that back. So instead of using carbon from oil for synthetic processes, we have the chance of using carbon and capturing it back from the atmosphere, converting that into biopolymers or other products. We have one organism that lives off of carbon monoxide, and we use as a reducing power to split water to produce hydrogen and oxygen. Also, there's numerous pathways that can be engineered metabolizing methane. And DuPont has a major program with Statoil in Norway to capture and convert the methane from the gas fields there into useful products.

Within a short while, I think there's going to be a new field called "Combinatorial Genomics," because with these new synthesis capabilities, these vast gene array repertoires and the homologous recombination, we think we can design a robot to make maybe a million different chromosomes a day. And therefore, as with all biology, you get selection through screening, whether you're screening for hydrogen production, or chemical production, or just viability. To understand the role of these genes is going to be well within reach.

We're trying to modify photosynthesis to produce hydrogen directly from sunlight. Photosynthesis is modulated by oxygen, and we have an oxygen-insensitive hydrogenase that we think will totally change this process. We're also combining cellulases, the enzymes that break down complex sugars into simple sugars and fermentation in the same cell for producing ethanol. Pharmaceutical production is already under way in major laboratories using microbes. The chemistry from compounds in the environment is orders of magnitude more complex than our best chemists can produce. I think future engineered species could be the source of food, hopefully a source of energy, environmental remediation and perhaps replacing the petrochemical industry.

Let me just close with ethical and policy studies. We delayed the start of our experiments in 1999 until we completed a year-and-a-half bioethical review as to whether we should try and make an artificial species. Every major religion participated in this. It was actually a very strange study, because the various religious leaders were using their scriptures as law books, and they couldn't find anything in them prohibiting making life, so it must be OK. The only ultimate concerns were biological warfare aspects of this, but gave us the go ahead to start these experiments for the reasons we were doing them.

Right now the Sloan Foundation has just funded a multi-institutional study on this, to work out what the risk and benefits to society are, and the rules that scientific teams such as my own should be using in this area, and we're trying to set good examples as we go forward. These are complex issues. Except for the threat of bio-terrorism, they're very simple issues in terms of, can we design things to produce clean energy, perhaps revolutionizing what developing countries can do and provide through various simple processes. Thank you very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!