下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Mark Roth:人工休眠即將全面理解與實現」- Suspended Animation Is within Our Grasp

觀看次數:2227  • 

框選或點兩下字幕可以直接查字典喔!

I'm going to talk to you today about my work on suspended animation. Now, usually when I mention suspended animation, people will flash me the Vulcan sign and laugh. But now, I'm not talking about gorking people out to fly to Mars or even Pandora, as much fun as that may be. I'm talking about the concept of using suspended animation to help people out in trauma.

So what do I mean when I say "suspended animation"? It is the process by which animals de-animate, appear dead and then can wake up again without being harmed. OK, so here is the sort of big idea: If you look out at nature, you find that as you tend to see suspended animation, you tend to see immortality. And so, what I'm going to tell you about is a way to tell a person who's in trauma—find a way to de-animate them a bit so they're a little more immortal when they have that heart attack.

An example of an organism or two that happens to be quite immortal would be plant seeds or bacterial spores. These creatures are some of the most immortal life forms on our planet, and they tend to spend most of their time in suspended animation. Bacterial spores are thought now by scientists to exist as individual cells that are alive, but in suspended animation for as long as 250 million years. To suggest that this all, sort of, about little, tiny creatures, I want to bring it close to home. In the immortal germ line of human beings—that is, the eggs that sit in the ovaries—they actually sit there in a state of suspended animation for up to 50 years in the life of each woman.

So then there's also my favorite example of suspended animation. This is Sea-Monkeys. Those of you with children, you know about them. You go to the pet store or the toy store, and you can buy these things. You just open the bag, and you just dump them into the plastic aquarium, and in about a week or so, you'll have little shrimps swimming around. Well, I wasn't so interested in the swimming. I was interested in what was going on in the bag, the bag on the toy store shelf where those shrimp sat in suspended animation indefinitely. So these ideas of suspended animation are not just about cells and weird, little organisms.

Occasionally, human beings are briefly de-animated, and the stories of people who are briefly de-animated that interest me the most are those having to do with the cold. Ten years ago, there was a skier in Norway that was trapped in an icy waterfall, and she was there for two hours before they extracted her. She was extremely cold, and she had no heartbeat—for all intents and purposes she was dead, frozen. Seven hours later, still without a heartbeat, they brought her back to life, and she went on to be the head radiologist in the hospital that treated her.

A couple of years later—so I get really excited about these things—about a couple of years later, there was a 13-month-old, she was from Canada. Her father had gone out in the wintertime; he was working night shift, and she followed him outside in nothing but a diaper. And they found her hours later, frozen, lifeless, and they brought her back to life.

There was a 65-year-old woman in Duluth, Minnesota last year that was found frozen and without a pulse in her front yard one morning in the winter, and they brought her back to life. The next day, she was doing so well, they wanted to run tests on her. She got cranky and just went home.

So, these are miracles, right? These are truly miraculous things that happen. Doctors have a saying that, in fact, "You're not dead until you're warm and dead." And it's true. It's true. In the New England Journal of Medicine, there was a study published that showed that with appropriate rewarming, people who had suffered without a heartbeat for three hours could be brought back to life without any neurologic problems. That's over 50 percent. So what I was trying to do is think of a way that we could study suspended animation to think about a way to reproduce, maybe, what happened to the skier.

Well, I have to tell you something very odd, and that is that being exposed to low oxygen does not always kill. So, in this room, there's 20 percent oxygen or so, and if we reduce the oxygen concentration, we will all be dead. And, in fact, the animals we were working with in the lab—these little garden worms, nematodes—they were also dead when we exposed them to low oxygen. And here's the thing that should freak you out. And that is that, when we lower the oxygen concentration further by 100 times, to 10 parts per million, they were not dead, they were in suspended animation, and we could bring them back to life without any harm. And this precise oxygen concentration, 10 parts per million, that caused suspended animation, is conserved. We can see it in a variety of different organisms. One of the creatures we see it in is a fish. And we can turn its heartbeat on and off by going in and out of suspended animation like you would a light switch.

So this was pretty shocking to me, that we could do this. And so I was wondering, when we were trying to reproduce the work with the skier, that we noticed that, of course, she had no oxygen consumption, and so maybe she was in a similar state of suspended animation. But, of course, she was also extremely cold. So we wondered what would happen if we took our suspended animals and exposed them to the cold. And so, what we found out was that, if you take animals that are animated like you and I, and you make them cold—that is, these were the garden worms—now they're dead. But if you have them in suspended animation, and move them into the cold, they're all alive. And there's the very important thing there: If you want to survive the cold, you ought to be suspended. Right? It's a really good thing.

And so, we were thinking about that, about this relationship between these things, and thinking about whether or not that's what happened to the skier. And so we wondered: Might there be some agent that is in us, something that we make ourselves, that we might be able to regulate our own metabolic flexibility in such a way as to be able to survive when we got extremely cold, and might otherwise pass away? I thought it might be interesting to sort of hunt for such things. You know?

I should mention briefly here that physiology textbooks that you can read about will tell you that this is a kind of heretical thing to suggest. We have, from the time we are slapped on the butt until we take our last dying breath—that's when we're newborn to when we're dead—we cannot reduce our metabolic rate below what's called a standard, or basal metabolic rate. But I knew that there were examples of creatures, also mammals, that do reduce their metabolic rate such as ground squirrels and bears, they reduce their metabolic rate in the wintertime when they hibernate. So I wondered: Might we be able to find some agent or trigger that might induce such a state in us?

And so, we went looking for such things. And this was a period of time when we failed tremendously. Ken Robinson is here. He talked about the glories of failure. Well, we had a lot of them. We tried many different chemicals and agents, and we failed over and over again. So, one time, I was at home watching television on the couch while my wife was putting our child to bed, and I was watching a television show. It was a television show—it was a NOVA show on PBS—about caves in Mexico. And this particular cave was Lechuguilla, and this cave is incredibly toxic to humans. The researchers had to suit up just to enter it. It's filled with this toxic gas, hydrogen sulfide. Now, hydrogen sulfide is curiously present in us. We make it ourselves. The highest concentration is in our brains. Yet, it was used as a chemical warfare agent in World War I. It's an extraordinarily toxic thing. In fact, in chemical accidents, hydrogen sulfide is known to—if you breathe too much of it, you collapse to the ground, you appear dead, but if you were brought out into room air, you can be reanimated without harm, if they do that quickly.

So, I thought, "Wow, I have to get some of this." Now, it's post-9/11 America, and when you go into the research institute, and you say, "Hi. I'd like to buy some concentrated, compressed gas cylinders of a lethal gas because I have these ideas, see, about wanting to suspend people. It's really going to be OK." So that's kind of a tough day, but I said, "There really is some basis for thinking why you might want to do this." As I said, this agent is in us, and, in fact, here's a curious thing, it binds to the very place inside of your cells where oxygen binds, and where you burn it, and that you do this burning to live. And so we thought, like in a game of musical chairs, might we be able to give a person some hydrogen sulfide, and might it be able to occupy that place like in a game of musical chairs where oxygen might bind? And because you can't bind the oxygen, maybe you wouldn't consume it, and then maybe it would reduce your demand for oxygen. I mean, who knows?

So—So, there's the bit about the dopamine and being a little bit, what do you call it, delusional, and you might suggest that was it. And so, we wanted to find out might we be able to use hydrogen sulfide in the presence of cold, and we wanted to see whether we could reproduce this skier in a mammal. Now, mammals are warm-blooded creatures, and when we get cold, we shake and we shiver, right? We try to keep our core temperature at 37 degrees by actually burning more oxygen. So, it was interesting for us when we applied hydrogen sulfide to a mouse when it was also cold because what happened is the core temperature of the mouse got cold. It stopped moving. It appeared dead. Its oxygen consumption rate fell by tenfold. And here's the really important point. I told you hydrogen sulfide is in us. It's rapidly metabolized, and all you have to do after six hours of being in this state of de-animation is simply put the thing out in room air, and it warms up, and it's none the worse for wear.

Now, this was cosmic. Really. Because we had found a way to de-animate a mammal, and it didn't hurt it. Now, we'd found a way to reduce its oxygen consumption to rock-bottom levels, and it was fine. Now, in this state of de-animation, it could not go out dancing, but it was not dead, and it was not harmed. So we started to think: Is this the agent that might have been present in the skier, and might have she had more of it than someone else, and might that have been able to reduce her demand for oxygen before she got so cold that she otherwise would have died, as we found out with our worm experiments?

So, we wondered: Can we do anything useful with this capacity to control metabolic flexibility? And one of the things we wondered—I'm sure some of you out there are economists, and you know all about supply and demand. And when supply is equal to demand, everything's fine, but when supply falls, in this case of oxygen, and demand stays high, you're dead. So, what I just told you is we can now reduce demand. We ought to be able to lower supply to unprecedented low levels without killing the animal. And with money we got from DARPA, we could show just that. If you give mice hydrogen sulfide, you can lower their demand for oxygen, and you can put them into oxygen concentrations that are as low as 5,000 feet above the top of Mt. Everest, and they can sit there for hours, and there's no problem. Well this was really cool. We also found out that we could subject animals to otherwise lethal blood loss, and we could save them if we gave them hydrogen sulfide.

So these proof of concept experiments led me to say "I should found a company, and we should take this out to a wider playing field." I founded a company called Ikaria with others' help. And this company, the first thing it did was make a liquid formulation of hydrogen sulfide an injectable form that we could put in and send it out to physician scientists all over the world who work on models of critical care medicine, and the results are incredibly positive.

In one model of heart attack, animals given hydrogen sulfide showed a 70 percent reduction in heart damage compared to those who got the standard of care that you and I would receive if we were to have a heart attack here today. Same is true for organ failure, when you have loss of function owing to poor perfusion of kidney, of liver, acute respiratory distress syndrome and damage suffered in cardiac-bypass surgery. So, these are the thought leaders in trauma medicine all over the world saying this is true, so it seems that exposure to hydrogen sulfide decreases damage that you receive from being exposed to otherwise lethal-low oxygen.

And I should say that the concentrations of hydrogen sulfide required to get this benefit are low, incredibly low. In fact, so low that physicians will not have to lower or dim the metabolism of people much at all to see the benefit I just mentioned, which is a wonderful thing, if you're thinking about adopting this. You don't want to be gorking people out just to save them, it's really confusing.

So, I want to say that we're in human trials. Now, and so—Thank you. The Phase 1 safety studies are over, and we're doing fine, we're now moved on. We have to get to Phase 2 and Phase 3. It's going to take us a few years. This has all moved very quickly, and the mouse experiments of hibernating mice happened in 2005; the first human studies were done in 2008, and we should know in a couple of years whether it works or not. And this all happened really quickly because of a lot of help from a lot of people.

I want to mention that, first of all, my wife, without whom this talk and my work would not be possible, so thank you very much. Also, the brilliant scientists who work at my lab and also others on staff, the Fred Hutchinson Cancer Research Center in Seattle, Washington—wonderful place to work. And also the wonderful scientists and businesspeople at Ikaria. One thing those people did out there was take this technology of hydrogen sulfide, which is this start-up company that's burning venture capital very quickly, and they fused it with another company that sells another toxic gas that's more toxic than hydrogen sulfide, and they give it to newborn babies who would otherwise die from a failure to be able to oxygenate their tissues properly. And this gas that is delivered in over a thousand critical care hospitals worldwide, now is approved, on label, and saves thousands of babies a year from certain death.

So it's really incredible for me to be a part of this. And I want to say that I think we're on the path of understanding metabolic flexibility in a fundamental way, and that in the not too distant future, an EMT might give an injection of hydrogen sulfide, or some related compound, to a person suffering severe injuries, and that person might de-animate a bit, they might become a little more immortal. Their metabolism will fall as though you were dimming a switch on a lamp at home. And then, they will have the time, that will buy them the time, to be transported to the hospital to get the care they need. And then, after they get that care—like the mouse, like the skier, like the 65-year-old woman—they'll wake up. A miracle? We hope not, or maybe we just hope to make miracles a little more common.

Thank you very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!