下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Uri Hasson:這是你的大腦在溝通時的樣子」- This Is Your Brain on Communication


框選或點兩下字幕可以直接查字典喔!

Imagine that we invented a device that can record my memories, my dreams, my ideas, and transmit it to your brain. That would be a game-changing technology, right? But in fact, we already possess this device, and it's called human communication system and effective storytelling. And to understand how this device is working, we have to look into our brains. And we have to formulate the question in a slightly different manner.

Now we have to ask how these neuron patterns in my brain that are associated with my memories and ideas are transmitted into your brains. And we think that there are two factors that enable us to communicate. First, your brain is now physically coupled to the sound wave that I'm transmitting to your brains. And second, we developed a common neural protocol that enabled us to communicate.

So how do we know that? In my lab in Princeton, we bring people to the fMRI scanner, and we scan their brains while they are either telling or listening to real-life stories. And to give you a sense of the stimulus we are using, let me play you now 20 seconds from a story that we used, told by a very talented storyteller, Jim O'Grady.

"So I'm banging out my story and I know it's good, and then I start to make it better—by adding an element of embellishment. Reporters call this 'making shit up.'"

"And they recommend against crossing that line. But I had just seen the line crossed between a high-powered dean and an assault with a pastry. And I kinda liked it."

Okay, so now let's look into your brain and see what's happening when you're listening to these kinds of stories. And let's start simple—let's start with one listener and one brain area: the auditory cortex that processes the sounds that come from the ear. And as you can see, in this particular brain area, the responses are going up and down as the story is unfolding. And now we can take these responses and compare them to the responses in other listeners in the same brain area. And we can ask: How similar are the responses across all listeners?

So over here you can see five listeners. And we start to scan their brains before the story is starting, when they're simply lying in the dark and waiting for the story to begin. And as you can see, the brain area is going up and down in each one of them, but their responses are very different, and not in sync. However, immediately as the story is starting, something amazing is happening.

"So I'm banging out my story and I know it's good, and then I start to make it—"

Suddenly, you can see that the responses in all of the subjects lock to the story, and now they are going up and down in a very similar way across all listeners. And in fact, this is exactly what is happening now in your brains when you listen to my sound speaking. And we call this effect "neural entrainment." And to explain to you what is neural entrainment, let me first explain what is physical entertainment.

So, we'll look and see five metronomes. And think of these five metronomes as five brains. And similar to the listeners before the story starts, these metronomes are going to click, but they're going to click out of phase.

Now see what will happen when I'm going to connect them together by placing them on these two cylinders.

Now these two cylinders start to rotate. And this rotation vibration is going through the wood and is going to couple all the metronomes together. And now listen to the click.
And this is what we call physical entrainment. And now let's go back to the brain and ask: So what's driving this neural entrainment? Is it simply the sounds that the speaker is producing? Or maybe it's the words. Or maybe it's the meaning that the speaker is trying to convey.

So to test it, we did the following experiments. First, we took the story and played it backwards. And that preserved many of the visual auditory features, but removed the meaning. And it sounds something like that.

And we flashed colors in the two brains to indicate brain areas that respond very similar across people. And as you can see, this incoming sound induced entrainment or alignment in all of the brains in auditory cortices that process the sounds, but it didn't spread deeper into the brain.

Now we can take these sounds and build words out of it. So if we take Jim O'Grady and scramble the words, we'll get a list of words.

...an animal...assorted facts...and right...on...pie, man...potentially...my stories

And you can see that these words start to induce alignment in early language areas, but not more than that. And now we can take the word and start to build sentences out of it.

And they recommend against crossing that line. He says: "Dear Jim, Good story. Nice details. Didn't she only know about him through me?"

And now you can see that the responses in all the language areas that process the incoming language become aligned or similar across all listeners. However, only when we use the full, engaging, coherent story do the responses spread deeper into the brain into higher-order areas, which include the frontal cortex and the parietal cortex, and make all of them respond very similarly. And we believe that these responses in higher-order areas are induced or become similar across listeners because of the meaning conveyed by the speaker, and not by words or sound. And if we are right, there's a strong prediction over here. If I will tell you the exact same ideas using two very different sets of words, your brain responses will still be similar.

And to test it, we did the following experiment in my lab. We took the English story and translated it to Russian. And now you have two different sounds and linguistic systems that convey the exact same meaning. And you play the English story to the English listeners and the Russian story to the Russian listeners, and now we can compare their responses across the groups. And when we did that, we didn't see responses that are similar in auditory cortices in language, because the language and sound are very different. However, you can see that the responses in high-order areas were still similar across these two groups. And we believe this is because they understood the story in a very similar way, as we confirmed, using a test after the story ended.

And we think that this alignment is necessary for communication. For example, as you can tell, I am not a native English speaker. And I grew up in another language, and the same might be for many of you in the audience. And still, we can communicate. How come? And we think we can communicate because we have this common code that presents meaning.

So, so far, I've only talked about what's happening in the listener's brain, in your brain, when you're listening to talks. But what's happening in the speaker's brain, in my brain, when I'm speaking to you? To look in the speaker's brain, we asked the speaker to go into the scanner, we scan his brain and then compare his brain responses to the brain responses of the listeners listening to the story. And you have to remember that producing speech and comprehending speech are very different processes. And here we're asking: How similar are they? And to our surprise, we saw that all these complex patterns within the listeners actually came from the speaker brain. So production and comprehension rely on very similar processes. And we also found the stronger the similarity between the listener's brain and the speaker's brain, the better the communication. So I know that if you are completely confused now, and I do hope that this is not the case, your brain response is very different than mine. But I also know that if you really understand me now, then your brain...and your brain...and your brain are really similar to mine.

And now, let's take all this information together and ask: How can we use it to transmit a memory that I have from my brain to your brains? Okay, so we did the following experiment. We let people watch, for the first time in their life, a TV episode from the BBC series "Sherlock," while we scanned their brains. And then we asked them to go back to the scanner and tell the story to another person that never watched the movie. So let's be specific. Think about this exact scene, when Sherlock is entering the cab in London driven by the murderer he is looking for.

With me, as a viewer, there is specific brain patterns in my brain when I watch it. Now, the exact same pattern, I can reactivate it in my brain again by telling the word: Sherlock, London, murderer. And when I'm transmitting these words to your brains now, you have to reconstruct it in your mind. And in fact, we see that this pattern emerging now in your brains. And we were really surprised to see that the pattern you have now in your brains when I'm describing to you these scenes would be very similar to the pattern I had when I watched this movie a few months ago in the scanner. And this starts to tell you about the mechanism by which we can tell stories and transmit information. Because, for example, now you're listening really hard and trying to understand what I'm saying. And I know that it's not easy. But I hope that at one point in the talk we clicked, and you got me. And I think that in a few hours, a few days, a few months, you're going to meet someone at a party, and you're going to tell him about this lecture, and suddenly it will be as if he is standing now here with us. And now you can see how we can take this mechanism and try to transmit memories and knowledge across people, which is wonderful, right?

But our ability to communicate rely only on our ability to have common ground. Because, for example, if I'm going to use the word, the British synonym "hackney carriage" instead of "cab," I know that I'm going to be misaligned with most of you in the audience. And this alignment depends not only on our ability to understand the basic concept; it also depends on our ability to develop common ground and understanding and shared belief systems. Because we know that in many cases, people understand the exact same story in very different ways.

So to test it in the lab, we did the following experiment. We took a story by J.D. Salinger, in which a husband lost track of his wife in the middle of a party, and he's calling his best friend, asking, "Did you see my wife?" For half of the subjects, we were telling that the wife was having an affair with the best friend. For the other half, we were telling that the wife is loyal and the husband is very jealous. This one sentence before the story started was enough to make the brain responses of all the people that believed the wife was having an affair to be very similar in these high-order areas and different than the other group. And if one sentence is enough to make your brain similar to people that think like you and very different than people that think differently than you, think how this effect is going to be amplified in real life, when we are all listening to the exact same news item after being exposed day after day after day to different media channels, like Fox News or The New York Times, that give us very different perspectives on reality.

So let me summarize. If everything worked as planned tonight, I used my ability to vocalize sound to be coupled to your brains. And I used this coupling to transmit my brain patterns associated with my memories and ideas into your brains. In this, I start to reveal the hidden neural mechanism by which we communicate. And we know that in the future it will enable us to improve and facilitate communication. But these studies also reveal that communication relies on a common ground. And we have to be really worried as a society if we are going to lose this common ground and our ability to speak with people that are slightly different than us because we let few very strong media channels to take control over the mic, and manipulate and control the way we all think. And I'm not sure how to fix it because I'm only a scientist. But maybe one way to do it is to go back to the more natural way of communication, which is a dialogue, in which it's not only me speaking to you now, but a more natural way of talking, in which I am speaking and I am listening, and together we are trying to come to a common ground and new ideas. Because after all, the people we are coupled to define who we are. And our desire to be coupled to another brain is something very basic that's starting at a very early age.

So let me finish with an example from my own private life that I think is a good example of how coupling to other people is really going to define who we are.

This my son Jonathan at a very early age. And see how he developed a vocal game together with my wife, only from the desire and pure joy of being coupled to another human being.

Now, think how the ability of my son to be coupled to us and other people in his life is going to shape the man he is going to become. And think how you change on a daily basis from the interaction and coupling to other people in your life.

So keep being coupled to other people. Keep spreading your ideas, because the sum of all of us together, coupled, is greater than our parts.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!