下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「VS Ramachandran:三個讓你了解大腦的例子」- 3 Clues to Understanding Your Brain

觀看次數:3559  • 

框選或點兩下字幕可以直接查字典喔!

Well, as Chris pointed out, I study the human brain, the functions and structure of the human brain. And I just want you to think for a minute about what this entails. Here is this mass of jelly, three-pound mass of jelly you can hold in the palm of your hand, and it can contemplate the vastness of interstellar space. It can contemplate the meaning of infinity and it can contemplate itself contemplating on the meaning of infinity. And this peculiar recursive quality that we call self-awareness, which I think is the holy grail of neuroscience, of neurology, and hopefully, someday, we'll understand how that happens.

OK, so how do you study this mysterious organ? I mean, you have 100 billion nerve cells, little wisps of protoplasm, interacting with each other, and from this activity emerges the whole spectrum of abilities that we call human nature and human consciousness. How does this happen? Well, there are many ways of approaching the functions of the human brain. One approach, the one we use mainly, is to look at patients with sustained damage to a small region of the brain, where there's been a genetic change in a small region of the brain. What then happens is not an across-the-board reduction in all your mental capacities, a sort of blunting of your cognitive ability. What you get is a highly selective loss of one function, with other functions being preserved intact, and this gives you some confidence in asserting that that part of the brain is somehow involved in mediating that function. So you can then map function onto structure, and then find out what the circuitry's doing to generate that particular function. So that's what we're trying to do.

So let me give you a few striking examples of this. In fact, I'm giving you three examples, six minutes each, during this talk. The first example is an extraordinary syndrome called Capgras syndrome. If you look at the first slide there, that's the temporal lobes, frontal lobes, parietal lobes, OK—the lobes that constitute the brain. And if you look, tucked away inside the inner surface of the temporal lobes—you can't see it there—is a little structure called the fusiform gyrus. And that's been called the face area in the brain, because when it's damaged, you can no longer recognize people's faces. You can still recognize them from their voice and say, "Oh yeah, that's Joe," but you can't look at their face and know who it is, right? You can't even recognize yourself in the mirror. I mean, you know it's you because you wink and it winks, and you know it's a mirror, but you don't really recognize yourself as yourself.

OK. Now that syndrome is well known as caused by damage to the fusiform gyrus. But there's another rare syndrome, so rare, in fact, that very few physicians have heard about it, not even neurologists. This is called the Capgras delusion, and that is a patient, who's otherwise completely normal, has had a head injury, comes out of coma, otherwise completely normal, he looks at his mother and says, "This looks exactly like my mother, this woman, but she's an impostor. She's some other woman pretending to be my mother." Now, why does this happen? Why would somebody—and this person is perfectly lucid and intelligent in all other respects, but when he sees his mother, his delusion kicks in and says, it's not mother.

Now, the most common interpretation of this, which you find in all the psychiatry textbooks, is a Freudian view, and that is that this chap—and the same argument applies to women, by the way, but I'll just talk about guys. When you're a little baby, a young baby, you had a strong sexual attraction to your mother. This is the so-called Oedipus complex of Freud. I'm not saying I believe this, but this is the standard Freudian view. And then, as you grow up, the cortex develops, and inhibits these latent sexual urges towards your mother. Thank God, or you would all be sexually aroused when you saw your mother. And then what happens is, there's a blow to your head, damaging the cortex, allowing these latent sexual urges to emerge, flaming to the surface, and suddenly and inexplicably you find yourself being sexually aroused by your mother. And you say, "My God, if this is my mom, how come I'm being sexually turned on? She's some other woman. She's an impostor." It's the only interpretation that makes sense to your damaged brain.

This has never made much sense to me, this argument. It's very ingenious, as all Freudian arguments are—but didn't make much sense because I have seen the same delusion, a patient having the same delusion, about his pet poodle. He'll say, "Doctor, this is not Fifi. It looks exactly like Fifi, but it's some other dog." Right? Now, you try using the Freudian explanation there. You'll start talking about the latent bestiality in all humans, or some such thing, which is quite absurd, of course.

Now, what's really going on? So, to explain this curious disorder, we look at the structure and functions of the normal visual pathways in the brain. Normally, visual signals come in, into the eyeballs, go to the visual areas in the brain. There are, in fact, 30 areas in the back of your brain concerned with just vision, and after processing all that, the message goes to a small structure called the fusiform gyrus, where you perceive faces. There are neurons there that are sensitive to faces. You can call it the face area of the brain, right? I talked about that earlier. Now, when that area's damaged, you lose the ability to see faces, right?

But from that area, the message cascades into a structure called the amygdala in the limbic system, the emotional core of the brain, and that structure, called the amygdala, gauges the emotional significance of what you're looking at. Is it prey? Is it predator? Is it mate? Or is it something absolutely trivial, like a piece of lint, or a piece of chalk, or a—I don't want to point to that, but—or a shoe, or something like that? OK? Which you can completely ignore. So if the amygdala is excited, and this is something important, the messages then cascade into the autonomic nervous system. Your heart starts beating faster. You start sweating to dissipate the heat that you're going to create from muscular exertion. And that's fortunate, because we can put two electrodes on your palm and measure the change in skin resistance produced by sweating. So I can determine, when you're looking at something, whether you're excited or whether you're aroused, or not, OK? And I'll get to that in a minute.

So my idea was, when this chap looks at an object, when he looks at his—any object for that matter, it goes to the visual areas and, however, and it's processed in the fusiform gyrus, and you recognize it as a pea plant, or a table, or your mother, for that matter, OK? And then the message cascades into the amygdala, and then goes down the autonomic nervous system. But maybe, in this chap, that wire that goes from the amygdala to the limbic system, the emotional core of the brain, is cut by the accident. So because the fusiform is intact, the chap can still recognize his mother, and says, "Oh yeah, this looks like my mother." But because the wire is cut to the emotional centers, he says, "But how come, if it's my mother, I don't experience a warmth?" Or terror, as the case may be? Right? And therefore, he says, "How do I account for this inexplicable lack of emotions? This can't be my mother. It's some strange woman pretending to be my mother."

How do you test this? Well, what you do is, if you take any one of you here, and put you in front of a screen, and measure your galvanic skin response, and show pictures on the screen, I can measure how you sweat when you see an object, like a table or an umbrella. Of course, you don't sweat. If I show you a picture of a lion, or a tiger, or a pinup, you start sweating, right? And, believe it or not, if I show you a picture of your mother—I'm talking about normal people—you start sweating. You don't even have to be Jewish.

Now, what happens if you show this patient? You take the patient and show him pictures on the screen and measure his galvanic skin response. Tables and chairs and lint, nothing happens, as in normal people, but when you show him a picture of his mother, the galvanic skin response is flat. There's no emotional reaction to his mother, because that wire going from the visual areas to the emotional centers is cut. So his vision is normal because the visual areas are normal, his emotions are normal—he'll laugh, he'll cry, so on and so forth—but the wire from vision to emotions is cut and therefore he has this delusion that his mother is an impostor. It's a lovely example of the sort of thing we do: take a bizarre, seemingly incomprehensible, neural psychiatric syndrome and say that the standard Freudian view is wrong, that, in fact, you can come up with a precise explanation in terms of the known neural anatomy of the brain.

By the way, if this patient then goes, and mother phones from an adjacent room—phones him—and he picks up the phone, and he says, "Wow, mom, how are you? Where are you?" There's no delusion through the phone. Then, she approaches him after an hour, he says, "Who are you? You look just like my mother." OK? The reason is there's a separate pathway going from the hearing centers in the brain to the emotional centers, and that's not been cut by the accident. So this explains why through the phone he recognizes his mother, no problem. When he sees her in person, he says it's an impostor. OK.

How is all this complex circuitry set up in the brain? Is it nature, genes, or is it nurture? And we approach this problem by considering another curious syndrome called phantom limb. And you all know what a phantom limb is. When an arm is amputated, or a leg is amputated, for gangrene, or you lose it in war—for example, in the Iraq war, it's now a serious problem—you continue to vividly feel the presence of that missing arm, and that's called a phantom arm or a phantom leg. In fact, you can get a phantom with almost any part of the body. Believe it or not, even with internal viscera. I've had patients with the uterus removed—hysterectomy—who have a phantom uterus, including phantom menstrual cramps at the appropriate time of the month. And in fact, one student asked me the other day, "Do they get phantom PMS?" A subject ripe for scientific enquiry, but we haven't pursued that.

OK, now the next question is, what can you learn about phantom limbs by doing experiments? One of the things we've found was, about half the patients with phantom limbs claim that they can move the phantom. It'll pat his brother on the shoulder, it'll answer the phone when it rings, it'll wave goodbye. These are very compelling, vivid sensations. The patient's not delusional. He knows that the arm is not there, but, nevertheless, it's a compelling sensory experience for the patient. But however, about half the patients, this doesn't happen. The phantom limb—they'll say, "But doctor, the phantom limb is paralyzed. It's fixed in a clenched spasm and it's excruciatingly painful. If only I could move it, maybe the pain will be relieved."

Now, why would a phantom limb be paralyzed? It sounds like an oxymoron. But when we were looking at the case sheets, what we found was, these people with the paralyzed phantom limbs, the original arm was paralyzed because of the peripheral nerve injury. The actual nerve supplying the arm was severed, was cut, by say, a motorcycle accident. So the patient had an actual arm, which is painful, in a sling for a few months or a year, and then, in a misguided attempt to get rid of the pain in the arm, the surgeon amputates the arm, and then you get a phantom arm with the same pains, right? And this is a serious clinical problem. Patients become depressed. Some of them are driven to suicide, OK?

So, how do you treat this syndrome? Now, why do you get a paralyzed phantom limb? When I looked at the case sheet, I found that they had an actual arm, and the nerves supplying the arm had been cut, and the actual arm had been paralyzed, and lying in a sling for several months before the amputation, and this pain then gets carried over into the phantom itself.

Why does this happen? When the arm was intact, but paralyzed, the brain sends commands to the arm, the front of the brain, saying, "Move," but it's getting visual feedback saying, "No." Move. No. Move. No. Move. No. And this gets wired into the circuitry of the brain, and we call this learned paralysis, OK? The brain learns, because of this Hebbian, associative link, that the mere command to move the arm creates a sensation of a paralyzed arm. And then, when you've amputated the arm, this learned paralysis carries over into your body image and into your phantom, OK?

Now, how do you help these patients? How do you unlearn the learned paralysis, so you can relieve him of this excruciating, clenching spasm of the phantom arm? Well, we said, what if you now send the command to the phantom, but give him visual feedback that it's obeying his command, right? Maybe you can relieve the phantom pain, the phantom cramp. How do you do that? Well, virtual reality. But that costs millions of dollars. So, I hit on a way of doing this for three dollars, but don't tell my funding agencies.

OK? What you do is you create what I call a mirror box. You have a cardboard box with a mirror in the middle, and then you put the phantom—so my first patient, Derek, came in. He had his arm amputated 10 years ago. He had a brachial avulsion, so the nerves were cut and the arm was paralyzed, lying in a sling for a year, and then the arm was amputated. He had a phantom arm, excruciatingly painful, and he couldn't move it. It was a paralyzed phantom arm.

So he came there, and I gave him a mirror like that, in a box, which I call a mirror box, right? And the patient puts his phantom left arm, which is clenched and in spasm, on the left side of the mirror, and the normal hand on the right side of the mirror, and makes the same posture, the clenched posture, and looks inside the mirror. And what does he experience? He looks at the phantom being resurrected, because he's looking at the reflection of the normal arm in the mirror, and it looks like this phantom has been resurrected. "Now," I said, "now, look, wiggle your phantom—your real fingers, or move your real fingers while looking in the mirror." He's going to get the visual impression that the phantom is moving, right? That's obvious, but the astonishing thing is, the patient then says, "Oh my God, my phantom is moving again, and the pain, the clenching spasm, is relieved."

And remember, my first patient who came in—My first patient came in, and he looked in the mirror, and I said, "Look at your reflection of your phantom." And he started giggling, he says, "I can see my phantom." But he's not stupid. He knows it's not real. He knows it's a mirror reflection, but it's a vivid sensory experience. Now, I said, "Move your normal hand and phantom."He said, "Oh, I can't move my phantom. You know that. It's painful." I said, "Move your normal hand."And he says, "Oh my God, my phantom is moving again. I don't believe this! And my pain is being relieved." OK? And then I said, "Close your eyes." He closes his eyes. "And move your normal hand.""Oh, nothing. It's clenched again." "OK, open your eyes." "Oh my God, oh my God, it's moving again!"So, he was like a kid in a candy store.

So, I said, OK, this proves my theory about learned paralysis and the critical role of visual input, but I'm not going to get a Nobel Prize for getting somebody to move his phantom limb. It's a completely useless ability, if you think about it. But then I started realizing, maybe other kinds of paralysis that you see in neurology, like stroke, focal dystonias—there may be a learned component to this, which you can overcome with the simple device of using a mirror.

So, I said, "Look, Derek"—well, first of all, the guy can't just go around carrying a mirror to alleviate his pain—I said, "Look, Derek, take it home and practice with it for a week or two. Maybe, after a period of practice, you can dispense with the mirror, unlearn the paralysis, and start moving your paralyzed arm, and then, relieve yourself of pain." So he said OK, and he took it home. I said, "Look, it's, after all, two dollars. Take it home."

So, he took it home, and after two weeks, he phones me, and he said, "Doctor, you're not going to believe this." I said, "What?" He said, "It's gone." I said, "What's gone?" I thought maybe the mirror box was gone. He said, "No, no, no, you know this phantom I've had for the last 10 years? It's disappeared." And I said—I got worried, I said, my God, I mean I've changed this guy's body image, what about human subjects, ethics and all of that? And I said, "Derek, does this bother you?" He said, "No, last three days, I've not had a phantom arm and therefore no phantom elbow pain, no clenching, no phantom forearm pain, all those pains are gone away. But the problem is I still have my phantom fingers dangling from the shoulder, and your box doesn't reach."

"So, can you change the design and put it on my forehead, so I can, you know, do this and eliminate my phantom fingers?" He thought I was some kind of magician.

Now, why does this happen? It's because the brain is faced with tremendous sensory conflict. It's getting messages from vision saying the phantom is back. On the other hand, there's no proprioception, muscle signals saying that there is no arm, right? And your motor command saying there is an arm, and, because of this conflict, the brain says, to hell with it, there is no phantom, there is no arm, right? It goes into a sort of denial—it gates the signals. And when the arm disappears, the bonus is, the pain disappears because you can't have disembodied pain floating out there, in space.

So, that's the bonus. Now, this technique has been tried on dozens of patients by other groups in Helsinki, so it may prove to be valuable as a treatment for phantom pain, and indeed, people have tried it for stroke rehabilitation. Stroke you normally think of as damage to the fibers, nothing you can do about it. But, it turns out some component of stroke paralysis is also learned paralysis, and maybe that component can be overcome using mirrors. This has also gone through clinical trials, helping lots and lots of patients.

OK, let me switch gears now to the third part of my talk, which is about another curious phenomenon called synesthesia. This was discovered by Francis Galton in the nineteenth century. He was a cousin of Charles Darwin. He pointed out that certain people in the population, who are otherwise completely normal, had the following peculiarity: every time they see a number, it's colored. Five is blue, seven is yellow, eight is chartreuse, nine is indigo, OK? Bear in mind, these people are completely normal in other respects. Or C sharp—sometimes, tones evoke color. C sharp is blue, F sharp is green, another tone might be yellow, right?

Why does this happen? This is called synesthesia. Galton called it synesthesia, a mingling of the senses. In us, all the senses are distinct. These people muddle up their senses. Why does this happen? One of the two aspects of this problem are very intriguing. Synesthesia runs in families, so Galton said this is a hereditary basis, a genetic basis. Secondly, synesthesia is about—and this is what gets me to my point about the main theme of this lecture, which is about creativity—synesthesia is eight times more common among artists, poets, novelists and other creative people than in the general population. Why would that be? I'm going to answer that question. It's never been answered before.

OK, what is synesthesia? What causes it? Well, there are many theories. One theory is they're just crazy. Now, that's not really a scientific theory, so we can forget about it. Another theory is they are acid junkies and potheads, right? Now, there may be some truth to this, because it's much more common here in the Bay Area than in San Diego. Now, the third theory is that—well, let's ask ourselves what's really going on in synesthesia. All right?

So, we found that the color area and the number area are right next to each other in the brain, in the fusiform gyrus. So we said, there's some accidental cross wiring between color and numbers in the brain. So, every time you see a number, you see a corresponding color, and that's why you get synesthesia. Now remember—why does this happen? Why would there be crossed wires in some people? Remember I said it runs in families? That gives you the clue. And that is, there is an abnormal gene, a mutation in the gene that causes this abnormal cross wiring.

In all of us, it turns out we are born with everything wired to everything else. So, every brain region is wired to every other region, and these are trimmed down to create the characteristic modular architecture of the adult brain. So, if there's a gene causing this trimming and if that gene mutates, then you get deficient trimming between adjacent brain areas. And if it's between number and color, you get number-color synesthesia. If it's between tone and color, you get tone-color synesthesia. So far, so good. Now, what if this gene is expressed everywhere in the brain, so everything is cross-connected? Well, think about what artists, novelists and poets have in common, the ability to engage in metaphorical thinking, linking seemingly unrelated ideas, such as, "It is the east, and Juliet is the Sun." Well, you don't say, Juliet is the sun, does that mean she's a glowing ball of fire? I mean, schizophrenics do that, but it's a different story, right? Normal people say, she's warm like the sun, she's radiant like the sun, she's nurturing like the sun. Instantly, you've found the links.

Now, if you assume that this greater cross wiring and concepts are also in different parts of the brain, then it's going to create a greater propensity towards metaphorical thinking and creativity in people with synesthesia. And, hence, the eight times more common incidence of synesthesia among poets, artists and novelists. OK, it's a very phrenological view of synesthesia. The last demonstration—can I take one minute?

I'm going to show you that you're all synesthetes, but you're in denial about it. Here's what I call Martian alphabet. Just like your alphabet, A is A, B is B, C is C. Different shapes for different phonemes, right? Here, you've got Martian alphabet. One of them is Kiki, one of them is Buba. Which one is Kiki and which one is Buba? How many of you think that's Kiki and that's Buba? Raise your hands. Well, it's one or two mutants. How many of you think that's Buba, that's Kiki? Raise your hands. Ninety-nine percent of you.

Now, none of you is a Martian. How did you do that? It's because you're all doing a cross-model synesthetic abstraction, meaning you're saying that that sharp inflection—ki-ki, in your auditory cortex, the hair cells being excited—Kiki, mimics the visual inflection, sudden inflection of that jagged shape. Now, this is very important, because what it's telling you is your brain is engaging in a primitive—it's just—it looks like a silly illusion, but these photons in your eye are doing this shape, and hair cells in your ear are exciting the auditory pattern, but the brain is able to extract the common denominator. It's a primitive form of abstraction, and we now know this happens in the fusiform gyrus of the brain, because when that's damaged, these people lose the ability to engage in Buba Kiki, but they also lose the ability to engage in metaphor.

If you ask this guy, what—"all that glitters is not gold," what does that mean?" The patient says, "Well, if it's metallic and shiny, it doesn't mean it's gold. You have to measure its specific gravity, OK?" So, they completely miss the metaphorical meaning. So, this area is about eight times the size in higher—especially in humansas in lower primates. Something very interesting is going on here in the angular gyrus, because it's the crossroads between hearing, vision and touch, and it became enormous in humans. And something very interesting is going on. And I think it's a basis of many uniquely human abilities like abstraction, metaphor and creativity. All of these questions that philosophers have been studying for millennia, we scientists can begin to explore by doing brain imaging, and by studying patients and asking the right questions. Thank you.

Sorry about that.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!