下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Alexander Belcredi:一種被遺忘許久的病毒,如何幫助我們對抗抗生素危機」- How a Long-Forgotten Virus Could Help Us Solve the Antibiotics Crisis

觀看次數:1920  • 

框選或點兩下字幕可以直接查字典喔!

Take a moment and think about a virus. What comes to your mind? An illness? A fear? Probably something really unpleasant. And yet, viruses are not all the same. It's true, some of them cause devastating disease. But others can do the exact opposite—they can cure disease. These viruses are called "phages."

Now, the first time I heard about phages was back in 2013. My father-in-law, who's a surgeon, was telling me about a woman he was treating. The woman had a knee injury, required multiple surgeries, and over the course of these, developed a chronic bacterial infection in her leg. Unfortunately for her, the bacteria causing the infection also did not respond to any antibiotic that was available. So at this point, typically, the only option left is to amputate the leg to stop the infection from spreading further. Now, my father-in-law was desperate for a different kind of solution, and he applied for an experimental, last-resort treatment using phages. And guess what? It worked. Within three weeks of applying the phages, the chronic infection had healed up, where before, no antibiotic was working. I was fascinated by this weird conception: viruses curing an infection. To this day, I am fascinated by the medical potential of phages. And I actually quit my job last year to build a company in this space.

Now, what is a phage? The image that you see here was taken by an electron microscope. And that means what we see on the screen is in reality extremely tiny. The grainy thing in the middle with the head, the long body and a number of feet—this is the image of a prototypical phage. It's kind of cute.

Now, take a look at your hand. In our team, we've estimated that you have more than 10 billion phages on each of your hands. What are they doing there?

Well, viruses are good at infecting cells. And phages are great at infecting bacteria. And your hand, just like so much of our body, is a hotbed of bacterial activity, making it an ideal hunting ground for phages. Because after all, phages hunt bacteria. It's also important to know that phages are extremely selective hunters. Typically, a phage will only infect a single bacterial species. So in this rendering here, the phage that you see hunts for a bacterium called Staphylococcus aureus, which is known as MRSA in its drug-resistant form. It causes skin or wound infections.

The way the phage hunts is with its feet. The feet are actually extremely sensitive receptors, on the lookout for the right surface on a bacterial cell. Once it finds it, the phage will latch on to the bacterial cell wall and then inject its DNA. DNA sits in the head of the phage and travels into the bacteria through the long body. At this point, the phage reprograms the bacteria into producing lots of new phages. The bacteria, in effect, becomes a phage factory. Once around 50-100 phages have accumulated within the bacteria cell, the phages are then able to release a protein that disrupts the bacteria cell wall. As the bacteria bursts, the phages move out and go on the hunt again for a new bacteria to infect.

Now, I'm sorry, this probably sounded like a scary virus again. But it's exactly this ability of phages—to multiply within the bacteria and then kill them—that make them so interesting from a medical point of view. The other part that I find extremely interesting is the scale at which this is going on. Now, just five years ago, I really had no clue about phages. And yet, today I would tell you they are part of a natural principle. Phages and bacteria go back to the earliest days of evolution. They have always existed in tandem, keeping each other in check. So this is really the story of yin and yang, of the hunter and the prey, at a microscopic level. Some scientists have even estimated that phages are the most abundant organism on our planet. So even before we continue talking about their medical potential, I think everybody should know about phages and their role on earth: they hunt, infect and kill bacteria.

Now, how come we have something that works so well in nature, every day, everywhere around us, and yet, in most parts of the world, we do not have a single drug on the market that uses this principle to combat bacterial infections? The simple answer is: no one has developed this kind of a drug yet, at least not one that conforms to the Western regulatory standards that set the norm for so much of the world. To understand why, we need to move back in time.

This is a picture of Felix d'Herelle. He is one of the two scientists credited with discovering phages. Except, when he discovered them back in 1917, he had no clue what he had discovered. He was interested in a disease called bacillary dysentery, which is a bacterial infection that causes severe diarrhea, and back then, was actually killing a lot of people, because after all, no cure for bacterial infections had been invented. He was looking at samples from patients who had survived this illness. And he found that something weird was going on. Something in the sample was killing the bacteria that were supposed to cause the disease.

To find out what was going on, he did an ingenious experiment. He took the sample, filtered it until he was sure that only something very small could have remained, and then took a tiny drop and added it to freshly cultivated bacteria. And he observed that within a number of hours, the bacteria had been killed. He then repeated this, again filtering, taking a tiny drop, adding it to the next batch of fresh bacteria. He did this in sequence 50 times, always observing the same effect. And at this point, he made two conclusions. First of all, the obvious one: yes, something was killing the bacteria, and it was in that liquid. The other one: it had to be biologic in nature, because a tiny drop was sufficient to have a huge impact. He called the agent he had found an "invisible microbe" and gave it the name "bacteriophage," which, literally translated, means "bacteria eater." And by the way, this is one of the most fundamental discoveries of modern microbiology. So many modern techniques go back to our understanding of how phages work—in genomic editing, but also in other fields. And just today, the Nobel Prize in chemistry was announced for two scientists who work with phages and develop drugs based on that.

Now, back in the 1920s and 1930s, people also immediately saw the medical potential of phages. After all, albeit invisible, you had something that reliably was killing bacteria. Companies that still exist today, such as Abbott, Squibb or Lilly, sold phage preparations. But the reality is, if you're starting with an invisible microbe, it's very difficult to get to a reliable drug. Just imagine going to the FDA today and telling them all about that invisible virus you want to give to patients. So when chemical antibiotics emerged in the 1940s, they completely changed the game. And this guy played a major role.

This is Alexander Fleming. He won the Nobel Prize in medicine for his work contributing to the development of the first antibiotic, penicillin. And antibiotics really work very differently than phages. For the most part, they inhibit the growth of the bacteria, and they don't care so much which kind of bacteria are present. The ones that we call broad-spectrum will even work against a whole bunch of bacteria out there. Compare that to phages, which work extremely narrowly against one bacterial species, and you can see the obvious advantage.

Now, back then, this must have felt like a dream come true. You had a patient with a suspected bacterial infection, you gave him the antibiotic, and without really needing to know anything else about the bacteria causing the disease, many of the patients recovered. And so as we developed more and more antibiotics, they, rightly so, became the first-line therapy for bacterial infections. And by the way, they have contributed tremendously to our life expectancy. We are only able to do complex medical interventions and medical surgeries today because we have antibiotics, and we don't risk the patient dying the very next day from the bacterial infection that he might contract during the operation.

So we started to forget about phages, especially in Western medicine. And to a certain extent, even when I was growing up, the notion was: we have solved bacterial infections; we have antibiotics. Of course, today, we know that this is wrong. Today, most of you will have heard about superbugs. Those are bacteria that have become resistant to many, if not all, of the antibiotics that we have developed to treat this infection.

How did we get here? Well, we weren't as smart as we thought we were. As we started using antibiotics everywhere—in hospitals, to treat and prevent; at home, for simple colds; on farms, to keep animals healthy—the bacteria evolved. In the onslaught of antibiotics that were all around them, those bacteria survived that were best able to adapt. Today, we call these "multidrug-resistant bacteria." And let me put a scary number out there. In a recent study commissioned by the UK government, it was estimated that by 2050, ten million people could die every year from multidrug-resistant infections. Compare that to eight million deaths from cancer per year today, and you can see that this is a scary number.

But the good news is, phages have stuck around. And let me tell you, they are not impressed by multidrug resistance.

They are just as happily killing and hunting bacteria all around us. And they've also stayed selective, which today is really a good thing. Today, we are able to reliably identify a bacterial pathogen that's causing an infection in many settings. And their selectivity will help us avoid some of the side effects that are commonly associated with broad-spectrum antibiotics. But maybe the best news of all is: they are no longer an invisible microbe. We can look at them. And we did so together before. We can sequence their DNA. We understand how they replicate. And we understand the limitations. We are in a great place to now develop strong and reliable phage-based pharmaceuticals.

And that's what's happening around the globe. More than 10 biotech companies, including our own company, are developing human-phage applications to treat bacterial infections. A number of clinical trials are getting underway in Europe and the US. So I'm convinced that we're standing on the verge of a renaissance of phage therapy. And to me, the correct way to depict the phage is something like this.

To me, phages are the superheroes that we have been waiting for in our fight against multidrug-resistant infections.

So the next time you think about a virus, keep this image in mind. After all, a phage might one day save your life.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!