下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Floyd E. Romesberg:人造 DNA 的極端可能性」- The Radical Possibilities of Man-Made DNA

觀看次數:1761  • 

框選或點兩下字幕可以直接查字典喔!

All life, every living thing ever, has been built according to the information in DNA. What does that mean? Well, it means that just as the English language is made up of alphabetic letters that, when combined into words, allow me to tell you the story I'm going to tell you today, DNA is made up of genetic letters that, when combined into genes, allow cells to produce proteins, strings of amino acids that fold up into complex structures that perform the functions that allow a cell to do what it does, to tell its stories. The English alphabet has 26 letters, and the genetic alphabet has four. They're pretty famous. Maybe you've heard of them. They are often just referred to as G, C, A and T. But it's remarkable that all the diversity of life is the result of four genetic letters. Imagine what it would be like if the English alphabet had four letters. What sort of stories would you be able to tell? What if the genetic alphabet had more letters? Would life with more letters be able to tell different stories, maybe even more interesting ones?

In 1999, my lab at the Scripps Research Institute in La Jolla, California started working on this question with the goal of creating living organisms with DNA made up of a six-letter genetic alphabet, the four natural letters plus two additional new man-made letters. Such an organism would be the first radically altered form of life ever created. It would be a semisynthetic form of life that stores more information than life ever has before. It would be able to make new proteins, proteins built from more than the 20 normal amino acids that are usually used to build proteins. What sort of stories could that life tell?

With the power of synthetic chemistry and molecular biology and just under 20 years of work, we created bacteria with six-letter DNA. Let me tell you how we did it.

All you have to remember from your high school biology is that the four natural letters pair together to form two base pairs. G pairs with C and A pairs with T, so to create our new letters, we synthesized hundreds of new candidates, new candidate letters, and examined their abilities to selectively pair with each other. And after about 15 years of work, we found two that paired together really well, at least in a test tube. They have complicated names, but let's just call them X and Y.

The next thing we needed to do was find a way to get X and Y into cells, and eventually we found that a protein that does something similar in algae worked in our bacteria. So the final thing that we needed to do was to show that with X and Y provided, cells could grow and divide and hold on to X and Y in their DNA. Everything we had done up to then took longer than I had hoped—I am actually a really impatient person—but this, the most important step, worked faster than I dreamed, basically immediately.

On a weekend in 2014, a graduate student in my lab grew bacteria with six-letter DNA. Let me take the opportunity to introduce you to them right now. This is an actual picture of them. These are the first semisynthetic organisms.

So bacteria with six-letter DNA, that's really cool, right? Well, maybe some of you are still wondering why. So let me tell you a little bit more about some of our motivations, both conceptual and practical. Conceptually, people have thought about life, what it is, what makes it different from things that are not alive, since people have had thoughts. Many have interpreted life as being perfect, and this was taken as evidence of a creator. Living things are different because a god breathed life into them. Others have sought a more scientific explanation, but I think it's fair to say that they still consider the molecules of life to be special. I mean, evolution has been optimizing them for billions of years, right? Whatever perspective you take, it would seem pretty impossible for chemists to come in and build new parts that function within and alongside the natural molecules of life without somehow really screwing everything up. But just how perfectly created or evolved are we? Just how special are the molecules of life? These questions have been impossible to even ask, because we've had nothing to compare life to. Now for the first time, our work suggests that maybe the molecules of life aren't that special. Maybe life as we know it isn't the only way it could be. Maybe we're not the only solution, maybe not even the best solution, just a solution.

These questions address fundamental issues about life, but maybe they seem a little esoteric. So what about practical motivations? Well, we want to explore what sort of new stories life with an expanded vocabulary could tell, and remember, stories here are the proteins that a cell produces and the functions they have. So what sort of new proteins with new types of functions could our semisynthetic organisms make and maybe even use? Well, we have a couple of things in mind.

The first is to get the cells to make proteins for us, for our use. Proteins are being used today for an increasingly broad range of different applications, from materials that protect soldiers from injury to devices that detect dangerous compounds, but at least to me, the most exciting application is protein drugs. Despite being relatively new, protein drugs have already revolutionized medicine, and, for example, insulin is a protein. You've probably heard of it, and it's manufactured as a drug that has completely changed how we treat diabetes. But the problem is that proteins are really hard to make and the only practical way to get them is to get cells to make them for you. So of course, with natural cells, you can only get them to make proteins with the natural amino acids, and so the properties those proteins can have, the applications they could be developed for, must be limited by the nature of those amino acids that the protein's built from. So here they are, the 20 normal amino acids that are strung together to make a protein, and I think you can see, they're not that different-looking. They don't bring that many different functions. They don't make that many different functions available. Compare that with the small molecules that synthetic chemists make as drugs. Now, they're much simpler than proteins, but they're routinely built from a much broader range of diverse things. Don't worry about the molecular details, but I think you can see how different they are. And in fact, it's their differences that make them great drugs to treat different diseases. So it's really provocative to wonder what sort of new protein drugs you could develop if you could build proteins from more diverse things.

So can we get our semisynthetic organism to make proteins that include new and different amino acids, maybe amino acids selected to confer the protein with some desired property or function? For example, many proteins just aren't stable when you inject them into people. They are rapidly degraded or eliminated, and this stops them from being drugs. What if we could make proteins with new amino acids with things attached to them that protect them from their environment, that protect them from being degraded or eliminated, so that they could be better drugs? Could we make proteins with little fingers attached that specifically grab on to other molecules? Many small molecules failed during development as drugs because they just weren't specific enough to find their target in the complex environment of the human body. So could we take those molecules and make them parts of new amino acids that, when incorporated into a protein, are guided by that protein to their target?

I started a biotech company called Synthorx. Synthorx stands for synthetic organism with an X added at the end because that's what you do with biotech companies.

Synthorx is working closely with my lab, and they're interested in a protein that recognizes a certain receptor on the surface of human cells. But the problem is that it also recognizes another receptor on the surface of those same cells, and that makes it toxic. So could we produce a variant of that protein where the part that interacts with that second bad receptor is shielded, blocked by something like a big umbrella so that the protein only interacts with that first good receptor? Doing that would be really difficult or impossible to do with the normal amino acids, but not with amino acids that are specifically designed for that purpose.

So getting our semisynthetic cells to act as little factories to produce better protein drugs isn't the only potentially really interesting application, because remember, it's the proteins that allow cells to do what they do. So if we have cells that make new proteins with new functions, could we get them to do things that natural cells can't do? For example, could we develop semisynthetic organisms that when injected into a person, seek out cancer cells and only when they find them, secrete a toxic protein that kills them? Could we create bacteria that eat different kinds of oil, maybe to clean up an oil spill? These are just a couple of the types of stories that we're going to see if life with an expanded vocabulary can tell.

So, sounds great, right? Injecting semisynthetic organisms into people, dumping millions and millions of gallons of our bacteria into the ocean or out on your favorite beach? Oh, wait a minute, actually it sounds really scary. This dinosaur is really scary. But here's the catch: our semisynthetic organisms in order to survive, need to be fed the chemical precursors of X and Y. X and Y are completely different than anything that exists in nature. Cells just don't have them or the ability to make them. So when we prepare them, when we grow them up in the controlled environment of the lab, we can feed them lots of the unnatural food. Then, when we deploy them in a person or out on a beach where they no longer have access that special food, they can grow for a little bit, they can survive for a little, maybe just long enough to perform some intended function, but then they start to run out of the food. They start to starve. They starve to death and they just disappear. So not only could we get life to tell new stories, we get to tell life when and where to tell those stories.

At the beginning of this talk I told you that we reported in 2014 the creation of semisynthetic organisms that store more information, X and Y, in their DNA. But all the motivations that we just talked about require cells to use X and Y to make proteins, so we started working on that. Within a couple years, we showed that the cells could take DNA with X and Y and copy it into RNA, the working copy of DNA. And late last year, we showed that they could then use X and Y to make proteins. Here they are, the stars of the show, the first fully-functional semisynthetic organisms.

These cells are green because they're making a protein that glows green. It's a pretty famous protein, actually, from jellyfish that a lot of people use in its natural form because it's easy to see that you made it. But within every one of these proteins, there's a new amino acid that natural life can't build proteins with.

Every living cell, every living cell ever, has made every one of its proteins using a four-letter genetic alphabet. These cells are living and growing and making protein with a six-letter alphabet. These are a new form of life. This is a semisynthetic form of life.

So what about the future? My lab is already working on expanding the genetic alphabet of other cells, including human cells, and we're getting ready to start working on more complex organisms. Think semisynthetic worms.

The last thing I want to say to you, the most important thing that I want to say to you, is that the time of semisynthetic life is here.

Thank you.

I mean, Floyd, this is so remarkable. I just wanted to ask you, what are the implications of your work for how we should think about the possibilities for life, like, in the universe, elsewhere? It just seems like so much of life, or so much of our assumptions are based on the fact that of course, it's got to be DNA, but is the possibility space of self-replicating molecules much bigger than DNA, even just DNA with six letters?

Absolutely, I think that's right, and I think what our work has shown, as I mentioned, is that there's been always this prejudice that sort of we're perfect, we're optimal, God created us this way, evolution perfected us this way. We've made molecules that work right alongside the natural ones, and I think that suggests that any molecules that obey the fundamental laws of chemistry and physics and you can optimize them could do the things that the natural molecules of life do. There's nothing magic there. And I think that it suggests that life could evolve many different ways, maybe similar to us with other types of DNA, maybe things without DNA at all.

I mean, in your mind, how big might that possibility space be? Do we even know? Are most things going to look something like a DNA molecule, or something radically different that can still self-reproduce and potentially create living organisms?

My personal opinion is that if we found new life, we might not even recognize it.

So this obsession with the search for Goldilocks planets in exactly the right place with water and whatever, that's a very parochial assumption, perhaps.

Well, if you want to find someone you can talk to, then maybe not, but I think that if you're just looking for any form of life, I think that's right, I think that you're looking for life under the light post.

Thank you for boggling all our minds. Thank so much, Floyd.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!