下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Elizabeth Blackburn:長生不老的細胞背後藏有什麼科學」- The Science of Cells That Never Get Old

觀看次數:1935  • 

框選或點兩下字幕可以直接查字典喔!

Where does the end begin? Well, for me, it all began with this little fellow. This adorable organism—well, I think it's adorable—is called Tetrahymena and it's a single-celled creature. It's also been known as pond scum. So that's right, my career started with pond scum.

Now, it was no surprise I became a scientist. Growing up far away from here, as a little girl I was deadly curious about everything alive. I used to pick up lethally poisonous stinging jellyfish and sing to them. And so starting my career, I was deadly curious about fundamental mysteries of the most basic building blocks of life, and I was fortunate to live in a society where that curiosity was valued.

Now, for me, this little pond scum critter Tetrahymena was a great way to study the fundamental mystery I was most curious about: those bundles of DNA in our cells called chromosomes. And it was because I was curious about the very ends of chromosomes, known as telomeres. Now, when I started my quest, all we knew was that they helped protect the ends of chromosomes. It was important when cells divide. It was really important, but I wanted to find out what telomeres consisted of, and for that, I needed a lot of them. And it so happens that cute little Tetrahymena has a lot of short linear chromosomes, around 20,000, so lots of telomeres. And I discovered that telomeres consisted of special segments of noncoding DNA right at the very ends of chromosomes.

But here's a problem. Now, we all start life as a single cell. It multiples to two. Two becomes four. Four becomes eight, and on and on to form the 200 million billion cells that make up our adult body. And some of those cells have to divide thousands of times. In fact, even as I stand here before you, all throughout my body, cells are furiously replenishing to, well, keep me standing here before you. So every time a cell divides, all of its DNA has to be copied, all of the coding DNA inside of those chromosomes, because that carries the vital operating instructions that keep our cells in good working order, so my heart cells can keep a steady beat, which I assure you they're not doing right now, and my immune cells can fight off bacteria and viruses, and our brain cells can save the memory of our first kiss and keep on learning throughout life.

But there is a glitch in the way DNA is copied. It is just one of those facts of life. Every time the cell divides and the DNA is copied, some of that DNA from the ends gets worn down and shortened, some of that telomere DNA. And think about it like the protective caps at the ends of your shoelace. And those keep the shoelace, or the chromosome, from fraying, and when that tip gets too short, it falls off, and that worn down telomere sends a signal to the cells. "The DNA is no longer being protected." It sends a signal. Time to die. So, end of story.

Well, sorry, not so fast. It can't be the end of the story, because life hasn't died off the face of the earth. So I was curious: if such wear and tear is inevitable, how on earth does Mother Nature make sure we can keep our chromosomes intact?

Now, remember that little pond scum critter Tetrahymena? The craziest thing was, Tetrahymena cells never got old and died. Their telomeres weren't shortening as time marched on. Sometimes they even got longer. Something else was at work, and believe me, that something was not in any textbook. So working in my lab with my extraordinary student Carol Greider—and Carol and I shared the Nobel Prize for this work—we began running experiments and we discovered cells do have something else. It was a previously undreamed-of enzyme that could replenish, make longer, telomeres, and we named it telomerase. And when we removed our pond scum's telomerase, their telomeres ran down and they died. So it was thanks to their plentiful telomerase that our pond scum critters never got old.

OK, now, that's an incredibly hopeful message for us humans to be receiving from pond scum, because it turns out that as we humans age, our telomeres do shorten, and remarkably, that shortening is aging us. Generally speaking, the longer your telomeres, the better off you are. It's the overshortening of telomeres that leads us to feel and see signs of aging. My skin cells start to die and I start to see fine lines, wrinkles. Hair pigment cells die. You start to see gray. Immune system cells die. You increase your risks of getting sick. In fact, the cumulative research from the last 20 years has made clear that telomere attrition is contributing to our risks of getting cardiovascular diseases, Alzheimer's, some cancers and diabetes, the very conditions many of us die of.

And so we have to think about this. What is going on? This attrition, we look and we feel older, yeah. Our telomeres are losing the war of attrition faster. And those of us who feel youthful longer, it turns out our telomeres are staying longer for longer periods of time, extending our feelings of youthfulness and reducing the risks of all we most dread as the birthdays go by.

OK, seems like a no-brainer. Now, if my telomeres are connected to how quickly I'm going to feel and get old, if my telomeres can be renewed by my telomerase, then all I have to do to reverse the signs and symptoms of aging is figure out where to buy that Costco-sized bottle of grade A organic fair trade telomerase, right? Great! Problem solved.

Not so fast, I'm sorry. Alas, that's not the case. OK. And why? It's because human genetics has taught us that when it comes to our telomerase, we humans live on a knife edge. OK, simply put, yes, nudging up telomerase does decrease the risks of some diseases, but it also increases the risks of certain and rather nasty cancers. So even if you could buy that Costco-sized bottle of telomerase, and there are many websites marketing such dubious products, the problem is you could nudge up your risks of cancers. And we don't want that.

Now, don't worry, and because, while I think it's kind of funny that right now, you know, many of us may be thinking, well, I'd rather be like pond scum.

There is something for us humans in the story of telomeres and their maintenance. But I want to get one thing clear. It isn't about enormously extending human lifespan or immortality. It's about health span. Now, health span is the number of years of your life when you're free of disease, you're healthy, you're productive, you're zestfully enjoying life. Disease span, the opposite of health span, is the time of your life spent feeling old and sick and dying. So the real question becomes, OK, if I can't guzzle telomerase, do I have control over my telomeres' length and hence my well-being, my health, without those downsides of cancer risks? OK?

So, it's the year 2000. Now, I've been minutely scrutinizing little teeny tiny telomeres very happily for many years, when into my lab walks a psychologist named Elissa Epel. Now, Elissa's expertise is in the effects of severe, chronic psychological stress on our mind's and our body's health. And there she was standing in my lab, which ironically overlooked the entrance to a mortuary, and—

And she had a life-and-death question for me. "What happens to telomeres in people who are chronically stressed?" she asked me. You see, she'd been studying caregivers, and specifically mothers of children with a chronic condition, be it gut disorder, be it autism, you name it—a group obviously under enormous and prolonged psychological stress. I have to say, her question changed me profoundly. See, all this time I had been thinking of telomeres as those miniscule molecular structures that they are, and the genes that control telomeres. And when Elissa asked me about studying caregivers, I suddenly saw telomeres in a whole new light. I saw beyond the genes and the chromosomes into the lives of the real people we were studying. And I'm a mom myself, and at that moment, I was struck by the image of these women dealing with a child with a condition very difficult to deal with, often without help. And such women, simply, often look worn down. So was it possible their telomeres were worn down as well?

So our collective curiosity went into overdrive. Elissa selected for our first study a group of such caregiving mothers, and we wanted to ask: What's the length of their telomeres compared with the number of years that they have been caregiving for their child with a chronic condition? So four years go by and the day comes when all the results are in, and Elissa looked down at our first scatterplot and literally gasped, because there was a pattern to the data, and it was the exact gradient that we most feared might exist. It was right there on the page. The longer, the more years that is, the mother had been in this caregiving situation, no matter her age, the shorter were her telomeres. And the more she perceived her situation as being more stressful, the lower was her telomerase and the shorter were her telomeres.

So we had discovered something unheard of: the more chronic stress you are under, the shorter your telomeres, meaning the more likely you were to fall victim to an early disease span and perhaps untimely death. Our findings meant that people's life events and the way we respond to these events can change how you maintain your telomeres. So telomere length wasn't just a matter of age counted in years. Elissa's question to me, back when she first came to my lab, indeed had been a life-and-death question.

Now, luckily, hidden in that data there was hope. We noticed that some mothers, despite having been carefully caring for their children for many years, had been able to maintain their telomeres. So studying these women closely revealed that they were resilient to stress. Somehow they were able to experience their circumstances not as a threat day in and day out but as a challenge, and this has led to a very important insight for all of us: we have control over the way we age all the way down into our cells.

OK, now our initial curiosity became infectious. Thousands of scientists from different fields added their expertise to telomere research, and the findings have poured in. It's up to over 10,000 scientific papers and counting. So several studies rapidly confirmed our initial finding that yes, chronic stress is bad for telomeres. And now many are revealing that we have more control over this particular aging process than any of us could ever have imagined. A few examples: a study from the University of California, Los Angeles of people who are caring for a relative with dementia, long-term, and looked at their caregiver's telomere maintenance capacity and found that it was improved by them practicing a form of meditation for as little as 12 minutes a day for two months. Attitude matters. If you're habitually a negative thinker, you typically see a stressful situation with a threat stress response, meaning if your boss wants to see you, you automatically think, "I'm about to be fired," and your blood vessels constrict, and your level of the stress hormone cortisol creeps up, and then it stays up, and over time, that persistently high level of the cortisol actually damps down your telomerase. Not good for your telomeres.

On the other hand, if you typically see something stressful as a challenge to be tackled, then blood flows to your heart and to your brain, and you experience a brief but energizing spike of cortisol. And thanks to that habitual "bring it on" attitude, your telomeres do just fine. So...What is all of this telling us? Your telomeres do just fine. You really do have power to change what is happening to your own telomeres.

But our curiosity just got more and more intense, because we started to wonder, what about factors outside our own skin? Could they impact our telomere maintenance as well? You know, we humans are intensely social beings. Was it even possible that our telomeres were social as well? And the results have been startling. As early as childhood, emotional neglect, exposure to violence, bullying and racism all impact your telomeres, and the effects are long-term. Can you imagine the impact on children of living years in a war zone? People who can't trust their neighbors and who don't feel safe in their neighborhoods consistently have shorter telomeres. So your home address matters for telomeres as well. On the flip side, tight-knit communities, being in a marriage long-term, and lifelong friendships, even, all improve telomere maintenance.

So what is all this telling us? It's telling us that I have the power to impact my own telomeres, and I also have the power to impact yours. Telomere science has told us just how interconnected we all are.

But I'm still curious. I do wonder what legacy all of us will leave for the next generation? Will we invest in the next young woman or man peering through a microscope at the next little critter, the next bit of pond scum, curious about a question we don't even know today is a question? It could be a great question that could impact all the world. And maybe, maybe you're curious about you. Now that you know how to protect your telomeres, are you curious what are you going to do with all those decades of brimming good health? And now that you know you could impact the telomeres of others, are you curious how will you make a difference? And now that you know the power of curiosity to change the world, how will you make sure that the world invests in curiosity for the sake of the generations that will come after us?

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!