下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Pawan Sinha:大腦如何學習辨識物體」- How Brains Learn to See


框選或點兩下字幕可以直接查字典喔!

If you are a blind child in India, you will very likely have to contend with at least two big pieces of bad news. The first bad news is that the chances of getting treatment are extremely slim to none, and that's because most of the blindness alleviation programs in the country are focused on adults, and there are very, very few hospitals that are actually equipped to treat children. In fact, if you were to be treated, you might well end up being treated by a person who has no medical credentials as this case from Rajasthan illustrates. This is a three-year-old orphan girl who had cataracts. So, her caretakers took her to the village medicine man, and instead of suggesting to the caretakers that the girl be taken to a hospital, the person decided to burn her abdomen with red-hot iron bars to drive out the demons. The second piece of bad news will be delivered to you by neuroscientists, who will tell you that if you are older than four or five years of age, then even if you have your eye corrected, the chances of your brain learning how to see are very, very slim—again, slim or none.

So when I heard these two things, it troubled me deeply, both because of personal reasons and scientific reasons. So let me first start with the personal reason. It'll sound corny, but it's sincere. That's my son, Darius. As a new father, I have a qualitatively different sense of just how delicate babies are, what our obligations are towards them and how much love we can feel towards a child. I would move heaven and earth in order to get treatment for Darius, and for me to be told that there might be other Dariuses who are not getting treatment, that's just viscerally wrong. So that's the personal reason.

Scientific reason is that this notion from neuroscience of critical periods that if the brain is older than four or five years of age, it loses its ability to learn—that doesn't sit well with me, because I don't think that idea has been tested adequately. The birth of the idea is from David Hubel and Torsten Wiesel's work, two researchers who were at Harvard, and they got the Nobel Prize in 1981 for their studies of visual physiology, which are remarkably beautiful studies, but I believe some of their work has been extrapolated into the human domain prematurely. So, they did their work with kittens, with different kinds of deprivation regiments, and those studies, which date back to the '60s, are now being applied to human children.

So I felt that I needed to do two things. One: provide care to children who are currently being deprived of treatment. That's the humanitarian mission. And the scientific mission would be to test the limits of visual plasticity. And these two missions, as you can tell, thread together perfectly. One adds to the other; in fact, one would be impossible without the other. So, to implement these twin missions, a few years ago, I launched Project Prakash. Prakash, as many of you know, is the Sanskrit word for light, and the idea is that in bringing light into the lives of children, we also have a chance of shedding light on some of the deepest mysteries of neuroscience. And the logo—even though it looks extremely Irish, it's actually derived from the Indian symbol of Diya, an earthen lamp. The Prakash, the overall effort has three components: outreach, to identify children in need of care; medical treatment; and in subsequent study. And I want to show you a short video clip that illustrates the first two components of this work.

This is an outreach station conducted at a school for the blind.

So, because this is a school for the blind, many children have permanent conditions. That's a case of microphthalmos, which is malformed eyes, and that's a permanent condition; it cannot be treated. That's an extreme of micropthalmos called enophthalmos. But, every so often, we come across children who show some residual vision, and that is a very good sign that the condition might actually be treatable. So, after that screening, we bring the children to the hospital. That's the hospital we're working with in Delhi, the Schroff Charity Eye Hospital. It has a very well-equipped pediatric ophthalmic center, which was made possible in part by a gift from the Ronald McDonald charity. So, eating burgers actually helps.

So, as I zoom in to the eyes of this child, you will see the cause of his blindness. The whites that you see in the middle of his pupils are congenital cataracts, so opacities of the lens. In our eyes, the lens is clear, but in this child, the lens has become opaque, and therefore he can't see the world. So, the child is given treatment. You'll see shots of the eye. Here's the eye with the opaque lens, the opaque lens extracted and an acrylic lens inserted. And here's the same child three weeks post-operation, with the right eye open.

Thank you.

So, even from that little clip, you can begin to get the sense that recovery is possible, and we have now provided treatment to over 200 children, and the story repeats itself. After treatment, the child gains significant functionality. In fact, the story holds true even if you have a person who got sight after several years of deprivation. We did a paper a few years ago about this woman that you see on the right, SRD, and she got her sight late in life, and her vision is remarkable at this age. I should add a tragic postscript to this—she died two years ago in a bus accident. So, hers is just a truly inspiring story—unknown, but inspiring story. So when we started finding these results, as you might imagine, it created quite a bit of stir in the scientific and the popular press. Here's an article in Nature that profiled this work, and another one in Time. So, we were fairly convinced—we are convinced—that recovery is feasible, despite extended visual deprivation.

The next obvious question to ask: What is the process of recovery? So, the way we study that is, let's say we find a child who has light sensitivity. The child is provided treatment, and I want to stress that the treatment is completely unconditional; there is no quid pro quo. We treat many more children then we actually work with. Every child who needs treatment is treated. After treatment, about every week, we run the child on a battery of simple visual tests in order to see how their visual skills are coming on line. And we try to do this for as long as possible. This arc of development gives us unprecedented and extremely valuable information about how the scaffolding of vision gets set up. What might be the causal connections between the early developing skills and the later developing ones?

And we've used this general approach to study many different visual proficiencies, but I want to highlight one particular one, and that is image parsing into objects. So, any image of the kind that you see on the left, be it a real image or a synthetic image, it's made up of little regions that you see in the middle column, regions of different colors, different luminances. The brain has this complex task of putting together, integrating, subsets of these regions into something that's more meaningful, into what we would consider to be objects, as you see on the right. And nobody knows how this integration happens, and that's the question we asked with Project Prakash.

So, here's what happens very soon after the onset of sight. Here's a person who had gained sight just a couple of weeks ago, and you see Ethan Myers, a graduate student from MIT, running the experiment with him. His visual-motor coordination is quite poor, but you get a general sense of what are the regions that he's trying to trace out. If you show him real world images, if you show others like him real world images, they are unable to recognize most of the objects because the world to them is over-fragmented; it's made up of a collage, a patchwork, of regions of different colors and luminances. And that's what's indicated in the green outlines. When you ask them, "Even if you can't name the objects, just point to where the objects are," these are the regions that they point to. So the world is this complex patchwork of regions. Even the shadow on the ball becomes its own object. Interestingly enough, you give them a few months, and this is what happens.

A very dramatic transformation has come about. And the question is: What underlies this transformation? It's a profound question, and what's even more amazing is how simple the answer is. The answer lies in motion and that's what I want to show you in the next clip.

And we see this pattern over and over again. The one thing the visual system needs in order to begin parsing the world is dynamic information. So the inference we are deriving from this, and several such experiments, is that dynamic information processing, or motion processing, serves as the bedrock for building the rest of the complexity of visual processing; it leads to visual integration and eventually to recognition.

This simple idea has far reaching implications. And let me just quickly mention two, one, drawing from the domain of engineering, and one from the clinic. So, from the perspective of engineering, we can ask: Goven that we know that motion is so important for the human visual system, can we use this as a recipe for constructing machine-based vision systems that can learn on their own, that don't need to be programmed by a human programmer? And that's what we're trying to do.

I'm at MIT, at MIT you need to apply whatever basic knowledge you gain. So we are creating Dylan, which is a computational system with an ambitious goal of taking in visual inputs of the same kind that a human child would receive, and autonomously discovering: What are the objects in this visual input? So, don't worry about the internals of Dylan. Here, I'm just going to talk about how we test Dylan. The way we test Dylan is by giving it inputs, as I said, of the same kind that a baby, or a child in Project Prakash would get. But for a long time we couldn't quite figure out: How can we get these kinds of video inputs? So, I thought, could we have Darius serve as our babycam carrier, and that way get the inputs that we feed into Dylan? So that's what we did. I had to have long conversations with my wife. In fact, Pam, if you're watching this, please forgive me.

So, we modified the optics of the camera in order to mimic the baby's visual acuity. As some of you might know, babies are born pretty much legally blind. Their acuity—our acuity is 20/20; babies' acuity is like 20/800, so they are looking at the world in a very, very blurry fashion. Here's what a baby-cam video looks like.

Thankfully, there isn't any audio to go with this. What's amazing is that working with such highly degraded input, the baby, very quickly, is able to discover meaning in such input. But then two or three days afterward, babies begin to pay attention to their mother's or their father's face. How does that happen? We want Dylan to be able to do that, and using this mantra of motion, Dylan actually can do that. So, given that kind of video input, with just about six or seven minutes worth of video, Dylan can begin to extract patterns that include faces. So, it's an important demonstration of the power of motion.

The clinical implication, it comes from the domain of autism. Visual integration has been associated with autism by several researchers. When we saw that, we asked: Could the impairment in visual integration be the manifestation of something underneath, of dynamic information processing deficiencies in autism? Because, if that hypothesis were to be true, it would have massive repercussions in our understanding of what's causing the many different aspects of the autism phenotype.

What you're going to see are video clips of two children—one neurotypical, one with autism, playing Pong. So, while the child is playing Pong, we are tracking where they're looking. In red are the eye movement traces. This is the neurotypical child, and what you see is that the child is able to make cues of the dynamic information to predict where the ball is going to go. Even before the ball gets to a place, the child is already looking there. Contrast this with a child with autism playing the same game. Instead of anticipating, the child always follows where the ball has been. The efficiency of the use of dynamic information seems to be significantly compromised in autism. So we are pursuing this line of work and hopefully we'll have more results to report soon.

Looking ahead, if you think of this disk as representing all of the children we've treated so far, this is the magnitude of the problem. The red dots are the children we have not treated. So, there are many, many more children who need to be treated, and in order to expand the scope of the project, we are planning on launching The Prakash Center for Children, which will have a dedicated pediatric hospital, a school for the children we are treating and also a cutting-edge research facility. The Prakash Center will integrate health care, education and research in a way that truly creates the whole to be greater than the sum of the parts.

So, to summarize: Prakash, in its five years of existence, it's had an impact in multiple areas, ranging from basic neuroscienceplasticity and learning in the brain, to clinically relevant hypotheses like in autism, the development of autonomous machine vision systems, education of the undergraduate and graduate students, and most importantly in the alleviation of childhood blindness. And for my students and I, it's been just a phenomenal experience because we have gotten to do interesting research, while at the same time helping the many children that we have worked with.

Thank you very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!