下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Robert Fischell:我的願望--三個非凡的醫學發明」- My Wish: Three Unusual Medical Inventions


框選或點兩下字幕可以直接查字典喔!

I'm going to discuss with you three of my inventions that can have an effect on 10 to a 100 million people, which we will hope to see happen. We discussed, in the prior film, some of the old things that we did, like stents and insulin pumps for the diabetic. And I'd like to talk very briefly about three new inventions that will change the lives of many people.

At the present time, it takes an average of three hours after the first symptoms of a heart attack are recognized by the patient, before that patient arrives at an emergency room. And people with silent ischemia—which, translated into English, means they don't have any symptoms—it takes even longer for them to get to the hospital. The AMI, Acute Myocardial Infarction, which is a doctor's big word so they can charge you more money—means a heart attack. Annual incidence: 1.2 million Americans. Mortality: 300,000 people dying each year. About half of them, 600,000, have permanent damage to their heart that will cause them to have very bad problems later on. Thus 900,000 people either have died or have significant damage to their heart muscle. Symptoms are often denied by the patient, particularly us men, because we are very brave. We are very brave, and we don't want to admit that I'm having a hell of a chest pain. Then, approximately 25 percent of all patients never have any symptoms. What are we going to do about them? How can we save their lives? It's particularly true of diabetics and elderly women.

Well, what is needed for the earliest possible warning of a heart attack? A means to determine if there's a complete blockage of a coronary artery. That, ladies and gentlemen, is a heart attack. The means consist of noting something a little technical, ST segment elevation of the electrogram—translated into English, that means that if there's an electrical signal in the heart, and one part of the ECG—which we call the ST segment—elevates, that is a sure sign of a heart attack. And if we had a computer put into the body of a person who's at risk, we could know, before they even have symptoms, that they're having a heart attack, to save their life. Well, the doctor can program a level of this ST elevation voltage that will trigger an emergency alarm, vibration like your cell phone, but right by your clavicle bone. And when it goes beep, beep, beep, you better do something about it, because if you want to live you have to get to some medical treatment.

So we have to try these devices out because the FDA won't just let us use them on people unless we try it out first, and the best model for this happens to be pigs. And what we tried with the pig was external electrodes on the skin, like you see in an emergency room, and I'm going to show you why they don't work very well. And then we put a lead, which is a wire, in the right ventricle inside the heart, which does the electrogram, which is the signal voltage from inside the heart. Well, with the pig, at the baseline, before we blocked the pig's artery to simulate a heart attack, that was the signal. After 43 seconds, even an expert couldn't tell the difference, and after three minutes—well, if you really studied it, you'd see a difference. But what happened when we looked inside the pig's heart, to the electrogram?

There was the baseline—first of all, a much bigger and more reliable signal. Second of all, I'll bet even you people who are untrained can see the difference, and we see here an ST segment elevation right after this sharp line. Look at the difference there. It doesn't take much—every layperson could see that difference, and computers can be programmed to easily detect it. Then, look at that after three minutes. We see that the signal that's actually in the heart, we can use it to tell people that they're having a heart attack even before they have symptoms so we can save their life.

Then we tried it with my son, Dr. Tim Fischell, we tried it on some human patients who had to have a stent put in. Well, he kept the balloon filled to block the artery, to simulate a blockage, which is what a heart attack is. And it's not hard to see that—the baseline is the first picture on the upper left. Next to it, at 30 seconds, you see this rise here, then this rise—that's the ST elevation. And if we had a computer that could detect it, we could tell you you're having a heart attack so early it could save your life and prevent congestive heart failure. And then he did it again. We filled the balloon again a few minutes later and here you see, even after 10 seconds, a great rise in this piece, which we can have computers inside, under your chest like a pacemaker, with a wire into your heart like a pacemaker. And computers don't go to sleep. We have a little battery and on this little battery that computer will run for five years without needing replacement.

What does the system look like? Well, on the left is the IMD, which is Implantable Medical Device, and tonight in the tent you can see it—they've exhibited it. It's about this big, the size of a pacemaker. It's implanted with very conventional techniques. And the EXD is an External Device that you can have on your night table. It'll wake you up and tell you to get your tail to the emergency room when the thing goes off because, if you don't, you're in deep doo-doo. And then, finally, a programmer that will set the level of the stimulation, which is the level which says you are having a heart attack.

The FDA says, OK, test this final device after it's built in some animal, which we said is a pig, so we had to get this pig to have a heart attack. And when you go to the farmyard, you can't easily get pigs to have heart attacks, so we said, well, we're experts in stents. Tonight you'll see some of our invented stents. We said, so we'll put in a stent, but we're not going to put in a stent that we'd put in people. We're putting in a copper stent, and this copper stent erodes the artery and causes heart attacks. That's not very nice, but, after all, we had to find out what the answer is. So we took two copper stents and we put it in the artery of this pig, and let me show you the result that's very gratifying as far as people who have heart disease are concerned.

So there it was, Thursday morning we stopped the pig's medication and there is his electrogram, the signal from inside the pig's heart coming out by radio telemetry. Then, on Friday at 6:43, he began to get certain signs, which later we had the pig run around—I'm not going to go into this early stage. But look what happened at 10:06 after we removed this pig's medication that kept him from having a heart attack. Any one of you now is an expert on ST elevation. Can you see it there? Can you see it in the picture after the big rise of the QRS—you see ST elevation? This pig at 10:06 was having a heart attack. What happens after you have the heart attack, this blockage? Your rhythm becomes irregular, and that's what happened 45 minutes later. Then, ventricular fibrillation, the heart quivers instead of beats—this is just before death of the pig—and then the pig died; it went flat-line. But we had a little bit over an hour where we could've saved this pig's life. Well, because of the FDA, we didn't save the pig's life, because we need to do this type of animal research for humans. But when it comes to the sake of a human, we can save their life. We can save the lives of people who are at high risk for a heart attack.

What is the response to acute myocardial infarction, a heart attack, today? Well, you feel some chest pain or indigestion. It's not all that bad; you decide not to do anything. Several hours pass and it gets worse, and even the man won't ignore it. Finally, you go to the emergency room. You wait as burns and other critical patients are treated, because 75 percent of the patients who go to an emergency room with chest pains don't have AMI, so you're not taken very seriously. They finally see you. It takes more time to get your electrocardiogram on your skin and diagnose it, and it's hard to do because they don't have the baseline data, which the computer we put in you gets. Finally, if you're lucky, you are treated in three or four hours after the incident, but the heart muscle has died. And that is the typical treatment in the advanced world—not Africa—that's the typical treatment in the advanced world today.

So we developed the AngelMed Guardian System and we have a device inside this patient, called the Implanted AngelMed Guardian. And when you have a blockage, the alarm goes off and it sends the alarm and the electrogram to an external device, which gets your baseline electrogram from 24 hours ago and the one that caused the alarm, so you can take it to the emergency room and show them, and say, take care of me right away. Then it goes to a network operations center, where they get your data from your patient database that's been put in at some central location, say, in the United States. Then it goes to a diagnostic center, and within one minute of your heart attack, your signal appears on the screen of a computer and the computer analyzes what your problem is. And the person who's there, the medical practitioner, calls you—this is also a cell phone—and says, "Mr. Smith, you're in deep doo-doo; you have a problem. We've called the ambulance. The ambulance is on the way. It'll pick you up, and then we're going to call your doctor, tell him about it. We're going to send him the signal that we have, that says you have a heart attack, and we're going to send the signal to the hospital and we're going to have it analyzed there, and there you're going to be with your doctor and you'll be taken care of so you won't die of a heart attack." That's the first invention that I wanted to describe.

And now I want to talk about something entirely different. At first I didn't think migraine headaches were a big problem because I'd never had a migraine headache, but then I spoke to some people who have three or four every week of their life, and their lives are being totally ruined by it. We have a mission statement for our company doing migraine, which is, "Prevent or ameliorate migraine headaches by the application of a safe, controlled magnetic pulse applied, as needed, by the patient." Now, you're probably very few physicists here. If you're a physicist you'd know there's a certain Faraday's Law, which says if I apply a magnetic pulse on salt water—that's your brains by the way—it'll generate electric currents, and the electric current in the brain can erase a migraine headache. That's what we have discovered.

So here's a picture of what we're doing. The patients who have a migraine preceded by an aura have a band of excited neurons—that's shown in red—that moves at three to five millimeters a minute towards the mid-brain. And when it hits the mid-brain, that's when the headache begins. There's this migraine that is preceded by a visual aura, and this visual aura, by the way—and I'll show you a picture—but it sort of begins with little dancing lights, gets bigger and bigger until it fills your whole visual field. And what we tried was this; here is a device called the Cadwell Model MES10. Weighs about 70 pounds, has a wire about an inch in diameter. And here's one of the patients who has an aura and always has a headache, bad one, after the aura. What do we do?

This is what an aura looks like. It's sort of funny dancing lights, shown there on the left and right side. And that's a fully developed visual aura, as we see on top. In the middle, our experimentalist, the neurologist, who said, "I'm going to move this down a little and I'm going to erase half your aura." And, by God, the neurologist did erase it, and that's the middle picture: half of the aura erased by a short magnetic pulse. What does that mean? That means that the magnetic pulse is generating an electric current that's interfering with the erroneous electrical activity in the brain. And finally he says, "OK, now I'm going to—" all of the aura get erased with an appropriately placed magnetic pulse.

What is the result? We designed a magnetic depolarizer that looks like this, that you could have—a lady, in her pocket book—and when you get an aura you can try it and see how it works. Well, the next thing they have to show is what was on ABC News, Channel 7, last week in New York City, in the 11 o'clock news.

For anyone who suffers from migraine headaches—and there are 30 million Americans who do—tonight: a possible answer. Eyewitness news reporter Stacy Sager tonight, with a small and portable machine that literally zaps your migraines away.

Well, my first reaction was that it was—looked awfully gun-like, and it was very strange.

But for Christina Sidebottom, almost anything was worth trying if it could stop a migraine. It may look silly or even frightening as you walk around with it in your purse, but researchers here in Ohio organizing clinical trials for this migraine zapper, say it is scientifically sound—that, in fact, when the average person gets a migraine, it's caused by something similar to an electrical impulse. The zapper creates a magnetic field to counteract that.

In other words, we're treating electricity with electricity, rather than treating electricity with the chemicals that we're using nowadays.

But is it safe to use every day? Experts say the research has actually been around for more than a decade, and more long-term studies need to be done. Christina now swears by it.

It's been the most wonderful thing for my migraine.

Researchers are hoping to present their studies to the FDA this summer.

And that is the invention to treat migraines.

You see, the problem is, 30 million Americans have migraine headaches, and we need a means to treat it, and I think that we now have it. And this is the first device that we did, and I'm going to talk about my second wish, which has something to do with this. Our conclusions from our studies so far, at three research centers, is there is a marked improvement in pain levels after using it just once. The most severe headaches responded better after we did it several times, and the unexpected finding indicates that even established headaches, not only those with aura, get treated and get diminished. And auras can be erased and the migraine, then, does not occur. And that is the migraine invention that we are talking about and that we are working on.

The third and last invention began with an idea. Epilepsy can best be treated by responsive electrical stimulation. Now, why do we use—add on, nearly, an epileptic focus? Now, unfortunately, us technical people, unlike Mr. Bono, have to get into all these technical words. Well, "responsive electrical stimulation" means that we sense, at a place in your brain which is called an "epileptic focus," which is where the epileptic seizure begins—we sense there, that it's going to happen, and then we respond by applying an electrical energy at that spot, which erases the errant signal so that you don't get the clinical manifestations of the migraine headache. We use current pacemaker defibrillator technology that's used for the heart. We thought we could adapt it for the brain. The device could be implanted under the scalpto be totally hidden and avoid wire breakage, which occurs if you put it in the chest and you try to move your neck around. Form a company to develop a neuro-pacemaker for epilepsy, as well as other diseases of the brain, because all diseases of the brain are a result of some electrical malfunction in it, that causes many, if not all, of brain disorders.

We formed a company called NeuroPace and we started work on responsive neurostimulation, and this is a picture of what the device looked like, that's placed into the cranial bone. This is probably a better picture. Here we have our device in which we put in a frame. There's a cut made in the scalp; it's opened; the neurosurgeon has a template; he marks it around, and uses a dental burr to remove a piece of the cranial bone exactly the size of our device. And tonight, you'll be able to see the device in the tent. And then with four screws, we put in a frame, then we snap in the device and we run with wires—the one shown in green will go to the surface of the brain with electrodes, to the epileptic focus, the origin of the epilepsy, where we can sense the electrical signal and have computer analysis that tells us when to hit it with some electrical current to prevent the clinical manifestation of the seizure. In the blue wire, we see what's called a deep brain electrode. If that's the source of the epilepsy, we can attack that as well.

The comprehensive solution: this is the device; it's about one inches by two inches and, oddly enough, just the thickness of most cranial bones. The advantages of responsive neurostimulation: It can detect and terminate seizures before the clinical symptoms occur, provide stimulation only when needed, can be turned off if seizures disappear; it has minimal side effects—as a matter of fact, in all our clinical trials to date, we've seen no side effects in the 40 or so patients in whom it's been implanted—and it's invisible, cosmetically hidden, so, if you have epilepsy and you have the device, no one will know it because you can't tell that it's there. And this shows what an electroencephalogram is, and on the left is the signal of a spontaneous seizure of one of the patients. Then we stimulated, and you see how that heavy black line and then you see the electroencephalogram signal going to normal, which means they did not get the epileptic seizure. That concludes my discussion of epilepsy, which is the third invention that I want to discuss here this afternoon.

I have three wishes. Well, I can't do much about Africa. I'm a tech; I'm into medical gadgetry, which is mostly high-tech stuff like Mr. Bono talked about. The first wish is to use the epilepsy responsive neurostimulator, called RNS, for Responsive NeuroStimulator—that's a brilliant acronym—for the treatment of other brain disorders. Well, if we're going to do it for epilepsy, why the hell not try it for something else? Then you saw what that device looked like, that the woman was using to fix her migraines? I tell you this: that's something which some research engineer like me would concoct, not a real designer of good equipment. We want to have some people, who really know how to do this, perform human engineering studies to develop the optimum design for the portable device for treating migraine headaches. And some of the sponsors of this TED meeting are such organizations. Then we're going to challenge the TED attendees to come up with a way to improve health care in the USA, where we have problems that Africa doesn't have. And by reducing malpractice litigation—malpractice litigation is not an African problem; it's an American problem.

So, to get quickly to my first wish—the brain operates by electrical signals. If the electrical signals create a brain disorder, electro-stimulation can overcome that disorder by acting on the brain's neurons. In other words, if you've screwed up electrical signals, maybe, by putting other electrical signals from a computer in the brain, we can counteract that. A signal in the brain that triggers brain dysfunction might be sensed as a trigger for electro-stimulation like we're doing with epilepsy. But even if there is no signal, electro-stimulation of an appropriate part of the brain can turn off a brain disorder. And consider treating psychotic disorders—and I want this involved with the TED group—such as obsessive-compulsive disorder that, presently, is not well treated with drugs, and includes five million Americans. And Mr. Fischer, and his group at NeuroPace, and myself believe that we can have a dramatic effect in improving OCD in America and in the world. That is the first wish.

The second wish is, at the present time, the clinical trials of transcranial magnetic stimulators—that's what TMS means, device to treat migraine headaches—appears to be quite successful. Well, that's the good news. The present portable device is far from optimally designed, both as to human factors as appearance. I think she said it looks like a gun. A lot of people don't like guns. Engage a company having prior successes for human factors engineering and industrial design to optimize the design of the first portable TMS device that will be sold to the patients who have migraine headaches. And that is the second wish.

And, of the 100,000-dollar prize money, that TED was so generous to give me, I am donating 50,000 dollars to the NeuroPace people to get on with the treatment of OCD, obsessive-compulsive disorder, and I'm making another 50,000 available for a company to optimize the design of the device for migraines. And that's how I'll use my 100,000-dollar prize money.

Well, the third and final wish is somewhat—unfortunately, it's much more complicated because it involves lawyers. Well, medical malpractice litigation in the US has escalated the cost of malpractice insurance, so that competent physicians are leaving their practice. Lawyers take cases on contingency with the hope of a big share of a big settlement by a sympathetic jury, because this patient really ended up badly. The high cost of health care in the US is partly due to litigation and insurance costs. I've seen pictures, graphs in today's USA Today showing it skyrocketing out of control, and this is one factor. Well, how can the TED community help with this situation?

I have a couple of ideas to begin with. As a starting point for discussion with the TED group, a major part of the problem is the nature of the written extent of informed consent that the patient or spouse must read and sign. For example, I asked the epilepsy people what are they using for informed consent. Would you believe, 12 pages, single space, the patient has to read before they're in our trial to cure their epilepsy? What do you think someone has at the end of reading 12 single-spaced pages? They don't understand what the hell it's about. That's the present system. How about making a video? We have entertainment people here; we have people who know how to do videos, with visual presentation of the anatomy and procedure done with animation. Everybody knows that we can do better with a visual thing that can be interactive with the patient, where they see the video and they're being videoed and they press, do you understand this? No, I don't. Well, then let's go to a simpler explanation. Then there's a simpler one and, oh yes, I understand that. Well, press the button and you're on record, you understand. And that is one of the ideas.

Now, also a video is done of the patient or spouse and medical presenter, with the patient agreeing that he understands the procedure to be done, including all the possible failure modes. The patient or spouse agrees not to file a lawsuit if one of the known procedure failures occurs. Now, in America, in fact, you cannot give up your right to trial by jury. However, if a video is there that everything was explained to you, and you have it all in the video file, it'll be much less likely that some hotshot lawyer will take this case on contingency, because it won't be nearly as good a case. If a medical error occurs, the patient or spouse agrees to a settlement for fair compensation by arbitration instead of going to court. That would save hundreds of millions of dollars in legal costs in the United States and would decrease the cost of medicine for everyone.

These are just some starting points. And, so there, that's the end of all my wishes. I wish I had more wishes but three is what I've got and there they are.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!