下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Juan Enriquez:未來的人類物種」- The Next Species of Human

觀看次數:2052  • 

框選或點兩下字幕可以直接查字典喔!

There's a great big elephant in the room called the economy. So let's start talking about that. I wanted to give you a current picture of the economy. That's what I have behind myself.

But of course what we have to remember is this. And what we have to think about is, when you're dancing in the flames, what's next? So what I'm going to try to do in the next 17 and a half minutes is I'm going to talk first about the flames—where we are in the economy—and then I'm going to take three trends that have taken place at TED over the last 25 years and that will take place in this conference and I will try and bring them together. And I will try and give you a sense of what the ultimate reboot looks like. Those three trends are the ability to engineer cells, the ability to engineer tissues, and robots. And somehow it will all make sense.

But anyway, let's start with the economy. There's a couple of really big problems that are still sitting there. One is leverage. And the problem with leverage is it makes the U.S. financial system look like this.

So, a normal commercial bank has nine to 10 times leverage. That means for every dollar you deposit, it loans out about nine or 10. A normal investment bank is not a deposit bank, it's an investment bank; it has 15 to 20 times. It turns out that B of A in September had 32 times. And your friendly Citibank had 47 times. Oops. That means every bad loan goes bad 47 times over. And that, of course, is the reason why all of you are making such generous and wonderful donations to these nice folks. And as you think about that, you've got to wonder: so what do banks have in store for you now? It ain't pretty.

The government, meanwhile, has been acting like Santa Claus. We all love Santa Claus, right? But the problem with Santa Clause is, if you look at the mandatory spending of what these folks have been doing and promising folks, it turned out that in 1967, 38 percent was mandatory spending on what we call "entitlements." And then by 2007 it was 68 percent. And we weren't supposed to run into 100 percent until about 2030. Except we've been so busy giving away a trillion here, a trillion there, that we've brought that date of reckoning forward to about 2017. And we thought we were going to be able to lay these debts off on our kids, but, guess what? We're going to start to pay them. And the problem with this stuff is, now that the bill's come due, it turns out Santa isn't quite as cute when it's summertime. Right?

Here's some advice from one of the largest investors in the United States. This guy runs the China Investment Corporation. He is the main buyer of U.S. Treasury bonds. And he gave an interview in December. Here's his first bit of advice. And here's his second bit of advice. And, by the way, the Chinese Prime Minister reiterated this at Davos last Sunday. This stuff is getting serious enough that if we don't start paying attention to the deficit, we're going to end up losing the dollar. And then all bets are off.

Let me show you what it looks like. I think I can safely say that I'm the only trillionaire in this room. This is an actual bill. And it's 10 triliion dollars. The only problem with this bill is it's not really worth very much. That was eight bucks last week, four bucks this week, a buck next week. And that's what happens to currencies when you don't stand behind them. So the next time somebody as cute as this shows up on your doorstep, and sometimes this creature's called Chrysler and sometimes Ford and sometimes...whatever you want—you've just got to say no. And you've got to start banishing a word that's called "entitlement." And the reason we have to do that in the short term is because we have just run out of cash.

If you look at the federal budget, this is what it looks like. The orange slice is what's discretionary. Everything else is mandated. It makes no difference if we cut out the bridges to Alaska in the overall scheme of things. So what we have to start thinking about doing is capping our medical spending because that's a monster that's simply going to eat the entire budget. We've got to start thinking about asking people to retire a little bit later. If you're 60 to 65 you retire on time. Your 401(k) just got nailed. If you're 50 to 60 we want you to work two years more. If you're under 50 we want you to work four more years. The reason why that's reasonable is, when your grandparents were given Social Security, they got it at 65 and were expected to check out at 68. Sixty-eight is young today. We've also got to cut the military about three percent a year.

We've got to limit other mandatory spending. We've got to quit borrowing as much, because otherwise the interest is going to eat that whole pie. And we've got to end up with a smaller government. And if we don't start changing this trend line, we are going to lose the dollar and start to look like Iceland. I got what you're thinking. This is going to happen when hell freezes over. But let me remind you this December it did snow in Vegas.

Here's what happens if you don't address this stuff. So, Japan had a fiscal real estate crisis back in the late '80s. And its 225 largest companies today are worth one quarter of what they were 18 years ago. We don't fix this now, how would you like to see a Dow 3,500 in 2026? Because that's the consequence of not dealing with this stuff. And unless you want this person to not just become the CFO of Florida, but the United States, we'd better deal with this stuff. That's the short term. That's the flame part. That's the financial crisis.

Now, right behind the financial crisis there's a second and bigger wave that we need to talk about. That wave is much larger, much more powerful, and that's of course the wave of technology. And what's really important in this stuff is, as we cut, we also have to grow. Among other things, because startup companies are .02 percent of U.S. GDP investment and they're about 17.8 percent of output. It's groups like that in this room that generate the future of the U.S. economy. And that's what we've got to keep growing. We don't have to keep growing these bridges to nowhere. So let's bring a romance novelist into this conversation. And that's where these three trends come together. That's where the ability to engineer microbes, the ability to engineer tissues, and the ability to engineer robots begin to lead to a reboot. And let me recap some of the stuff you've seen.

Craig Venter showed up here last year and showed you the first fully programmable cell that acts like hardware where you can insert DNA and have it boot up as a different species. In parallel, the folks at MIT have been building a standard registry of biological parts. So think of it as a Radio Shack for biology. You can go out and get your proteins, your RNA, your DNA, whatever. And start building stuff. In 2006 they brought together high school students and college students and started to build these little odd creatures. They just happened to be alive instead of circuit boards.

Here was one of the first things they built. So, cells have this cycle. First they don't grow. Then they grow exponentially, and then they stop growing. Graduate students wanted a way of telling which stage they were in. So they engineered these cells so that when they're growing in the exponential phase, they would smell like wintergreen. And when they stopped growing they would smell like bananas. And you could tell very easily when your experiment was working and wasn't, and where it was in the phase.

This got a bit more complicated two years later. Twenty-one countries came together. Dozens of teams. They started competing. The team from Rice University started to engineer the substance in red wine that makes red wine good for you into beer. So you take resveratrol and you put it into beer. Of course, one of the judges is wandering by, and he goes, "Wow! Cancer-fighting beer! There is a God."

The team from Taiwan was a little bit more ambitious. They tried to engineer bacterias in such a way that they would act as your kidneys. Four years ago, I showed you this picture. And people oohed and ahhed, because Cliff Tabin had been able to grow an extra wing on a chicken. And that was very cool stuff back then. But now moving from bacterial engineering to tissue engineering, let me show you what's happened in that period of time.

Two years ago, you saw this creature. An almost-extinct animal from Xochimilco, Mexico called an axolotl that can re-generate its limbs. You can freeze half the heart. It regrows. You can freeze half the brain. It regrows. It's almost like leaving Congress. But now, you don't have to have the animal itself to regenerate, because you can build cloned mice molars in Petri dishes. And, of course if you can build mice molars in Petri dishes, you can grow human molars in Petri dishes. This should not surprise you, right? I mean, you're born with no teeth. You give away all your teeth to the tooth fairy. You re-grow a set of teeth. But then if you lose one of those second set of teeth, they don't regrow, unless, if you're a lawyer.

But, of course, for most of us, we know how to grow teeth, and therefore we can take adult stem teeth, put them on a biodegradable mold, regrow a tooth, and simply implant it. And we can do it with other things. So, a Spanish woman who was dying of T.B. had a donor trachea, they took all the cells off the trachea, they spraypainted her stem cells onto that cartilage. She regrew her own trachea, and 72 hours later it was implanted. She's now running around with her kids. This is going on in Tony Atala's lab in Wake Forest where he is regrowing ears for injured soldiers, and he's also regrowing bladders. So there are now nine women walking around Boston with regrown bladders, which is much more pleasant than walking around with a whole bunch of plastic bags for the rest of your life.

This is kind of getting boring, right? I mean, you understand where this story's going. But it gets more interesting. Last year, this group was able to take all the cells off a heart, leaving just the cartilage. Then, they sprayed stem cells onto that heart, from a mouse. Those stem cells self-organized, and that heart started to beat. Life happens.

This may be one of the ultimate papers. This was done in Japan and in the U.S., published at the same time, and it rebooted skin cells into stem cells, last year. That meant that you can take the stuff right here, and turn it into almost anything in your body. And this is becoming common, it's moving very quickly, it's moving in a whole series of places.

Third trend: robots. Those of us of a certain age grew up expecting that by now we would have Rosie the Robot from "The Jetsons" in our house. And all we've got is a Roomba. We also thought we'd have this robot to warn us of danger. Didn't happen. And these were robots engineered for a flat world, right? So, Rosie runs around on skates and the other one ran on flat threads. If you don't have a flat world, that's not good, which is why the robot's we're designing today are a little different.

This is Boston Dynamics' "BigDog." And this is about as close as you can get to a physical Turing test. Okay, so let me remind you, a Turing test is where you've got a wall, you're talking to somebody on the other side of the wall, and when you don't know if that thing is human or animal—that's when computers have reached human intelligence. This is not an intelligence Turing rest, but this is as close as you can get to a physical Turing test. And this stuff is moving very quickly, and by the way, that thing can carry about 350 pounds of weight. These are not the only interesting robots. You've also got flies, the size of flies, that are being made by Robert Wood at Harvard. You've got Stickybots that are being made at Stanford. And as you bring these things together, as you bring cells, biological tissue engineering and mechanics together, you begin to get some really odd questions.

In the last Olympics, this gentleman, who had several world records in the Special Olympics, tried to run in the normal Olympics. The only issue with Oscar Pistorius is he was born without bones in the lower part of his legs. He came within about a second of qualifying. He sued to be allowed to run, and he won the suit, but didn't qualify by time. Next Olympics, you can bet that Oscar, or one of Oscar's successors, is going to make the time. And two or three Olympics after that, they are going to be unbeatable.

And as you bring these trends together, and as you think of what it means to take people who are profoundly deaf, who can now begin to hear—I mean, remember the evolution of hearing aids, right? I mean, your grandparents had these great big cones, and then your parents had these odd boxes that would squawk at odd times during dinner, and now we have these little buds that nobody sees. And now you have cochlear implants that go into people's heads and allow the deaf to begin to hear. Now, they can't hear as well as you and I can. But, in 10 or 15 machine generations they will, and these are machine generations, not human generations. And about two or three years after they can hear as well as you and I can, then they'll be able to hear maybe how bats sing, or how whales talk,or how dogs talk, and other types of tonal scales. They'll be able to focus their hearing, they'll be able to increase the sensitivity, decrease the sensitivity, do a series of things that we can't do.

And the same thing is happening in eyes. This is a group in Germany that's beginning to engineer eyes so that people who are blind can begin to see light and dark. Very primitive. And then they'll be able to see shape. And then they'll be able to see color, and then they'll be able to see in definition, and one day, they'll see as well as you and I can. And a couple of years after that, they'll be able to see in ultraviolet, they'll be able to see in infrared, they'll be able to focus their eyes, they'll be able to come into a microfocus. They'll do stuff you and I can't do. All of these things are coming together, and it's a particularly important thing to understand, as we worry about the flames of the present, to keep an eye on the future.

And, of course, the future is looking back 200 years, because next week is the 200th anniversary of Darwin's birth. And it's the 150th anniversary of the publication of "The Origin of Species." And Darwin, of course, argued that evolution is a natural state. It is a natural state in everything that is alive, including hominids. There have actually been 22 species of hominids that have been around, have evolved, have wandered in different places, have gone extinct. It is common for hominids to evolve. And that's the reason why, as you look at the hominid fossil record, erectus, and heidelbergensis, and floresiensis, and Neanderthals, and Homo sapiens, all overlap. The common state of affairs is to have overlapping versions of hominids, not one.

And as you think of the implications of that, here's a brief history of the universe. The universe was created 13.7 billion years ago, and then you created all the stars, and all the planets, and all the galaxies, and all the Milky Ways. And then you created Earth about 4.5 billion years ago, and then you got life about four billion years ago, and then you got hominids about 0.006 billion years ago, and then you got our version of hominids about 0.0015 billion years ago. Ta-dah! Maybe the reason for thr creation of the universe, and all the galaxies, and all the planets, and all the energy, and all the dark energy, and all the rest of stuff is to create what's in this room. Maybe not. That would be a mildly arrogant viewpoint. So, if that's not the purpose of the universe, then what's next?

I think what we're going to see is we're going to see a different species of hominid. I think we're going to move from a Homo sapiens into a Homo evolutis. And I think this isn't 1,000 years out. I think most of us are going to glance at it, and our grandchildren are going to begin to live it. And a Homo evolutis brings together these three trends into a hominid that takes direct and deliberate control over the evolution of his species, her species, and other species. And that, of course, would be the ultimate reboot.

Thank you very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!