下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Francis Collins:我們現在就需要更好的藥」- We Need Better Drugs—Now


框選或點兩下字幕可以直接查字典喔!

So let me ask for a show of hands. How many people here are over the age of 48? Well, there do seem to be a few.

Well, congratulations, because if you look at this particular slide of U.S. life expectancy, you are now in excess of the average life span of somebody who was born in 1900.

But look what happened in the course of that century. If you follow that curve, you'll see that it starts way down there. There's that dip there for the 1918 flu. And here we are at 2010, average life expectancy of a child born today, age 79, and we are not done yet. Now, that's the good news. But there's still a lot of work to do.

So, for instance, if you ask, how many diseases do we now know the exact molecular basis? Turns out it's about 4,000, which is pretty amazing, because most of those molecular discoveries have just happened in the last little while. It's exciting to see that in terms of what we've learned, but how many of those 4,000 diseases now have treatments available? Only about 250. So we have this huge challenge, this huge gap.

You would think this wouldn't be too hard, that we would simply have the ability to take this fundamental information that we're learning about how it is that basic biology teaches us about the causes of disease and build a bridge across this yawning gap between what we've learned about basic science and its application, a bridge that would look maybe something like this, where you'd have to put together a nice shiny way to get from one side to the other.

Well, wouldn't it be nice if it was that easy? Unfortunately, it's not. In reality, trying to go from fundamental knowledge to its application is more like this. There are no shiny bridges. You sort of place your bets. Maybe you've got a swimmer and a rowboat and a sailboat and a tugboat and you set them off on their way, and the rains come and the lightning flashes, and oh my gosh, there are sharks in the water and the swimmer gets into trouble, and, uh oh, the swimmer drowned and the sailboat capsized, and that tugboat, well, it hit the rocks, and maybe if you're lucky, somebody gets across.

Well, what does this really look like? Well, what is it to make a therapeutic, anyway? What's a drug? A drug is made up of a small molecule of hydrogen, carbon, oxygen, nitrogen, and a few other atoms all cobbled together in a shape, and it's those shapes that determine whether, in fact, that particular drug is going to hit its target. Is it going to land where it's supposed to? So look at this picture here—a lot of shapes dancing around for you. Now what you need to do, if you're trying to develop a new treatment for autism or Alzheimer's disease or cancer is to find the right shape in that mix that will ultimately provide benefit and will be safe. And when you look at what happens to that pipeline, you start out maybe with thousands, tens of thousands of compounds. You weed down through various steps that cause many of these to fail. Ultimately, maybe you can run a clinical trial with four or five of these, and if all goes well, 14 years after you started, you will get one approval. And it will cost you upwards of a billion dollars for that one success.

So we have to look at this pipeline the way an engineer would, and say, "How can we do better?" And that's the main theme of what I want to say to you this morning. How can we make this go faster? How can we make it more successful?

Well, let me tell you about a few examples where this has actually worked. One that has just happened in the last few months is the successful approval of a drug for cystic fibrosis. But it's taken a long time to get there. Cystic fibrosis had its molecular cause discovered in 1989 by my group working with another group in Toronto, discovering what the mutation was in a particular gene on chromosome 7. That picture you see there? Here it is. That's the same kid. That's Danny Bessette, 23 years later, because this is the year, and it's also the year where Danny got married, where we have, for the first time, the approval by the FDA of a drug that precisely targets the defect in cystic fibrosis based upon all this molecular understanding. That's the good news. The bad news is, this drug doesn't actually treat all cases of cystic fibrosis, and it won't work for Danny, and we're still waiting for that next generation to help him.

But it took 23 years to get this far. That's too long. How do we go faster?

Well, one way to go faster is to take advantage of technology, and a very important technology that we depend on for all of this is the human genome, the ability to be able to look at a chromosome, to unzip it, to pull out all the DNA, and to be able to then read out the letters in that DNA code, the A's, C's, G's and T's that are our instruction book and the instruction book for all living things, and the cost of doing this, which used to be in the hundreds of millions of dollars, has in the course of the last 10 years fallen faster than Moore's Law, down to the point where it is less than 10,000 dollars today to have your genome sequenced, or mine, and we're headed for the $1,000 genome fairly soon. Well, that's exciting. How does that play out in terms of application to a disease?

I want to tell you about another disorder. This one is a disorder which is quite rare. It's called Hutchinson-Gilford progeria, and it is the most dramatic form of premature aging. Only about one in every four million kids has this disease, and in a simple way, what happens is, because of a mutation in a particular gene, a protein is made that's toxic to the cell and it causes these individuals to age at about seven times the normal rate.

Let me show you a video of what that does to the cell. The normal cell, if you looked at it under the microscope, would have a nucleus sitting in the middle of the cell, which is nice and round and smooth in its boundaries and it looks kind of like that. A progeria cell, on the other hand, because of this toxic protein called progerin, has these lumps and bumps in it. So what we would like to do after discovering this back in 2003 is to come up with a way to try to correct that. Well again, by knowing something about the molecular pathways, it was possible to pick one of those many, many compounds that might have been useful and try it out. In an experiment done in cell culture and shown here in a cartoon, if you take that particular compound and you add it to that cell that has progeria, and you watch to see what happened, in just 72 hours, that cell becomes, for all purposes that we can determine, almost like a normal cell.

Well that was exciting, but would it actually work in a real human being? This has led, in the space of only four years from the time the gene was discovered to the start of a clinical trial, to a test of that very compound. And the kids that you see here all volunteered to be part of this, 28 of them, and you can see as soon as the picture comes up that they are in fact a remarkable group of young people all afflicted by this disease, all looking quite similar to each other. And instead of telling you more about it, I'm going to invite one of them, Sam Berns from Boston, who's here this morning, to come up on the stage and tell us about his experience as a child affected with progeria. Sam is 15 years old. His parents, Scott Berns and Leslie Gordon, both physicians, are here with us this morning as well. Sam, please have a seat.

So Sam, why don't you tell these folks what it's like being affected with this condition called progeria?

Well, progeria limits me in some ways. I cannot play sports or do physical activities, but I have been able to take interest in things that progeria, luckily, does not limit. But when there is something that I really do want to do that progeria gets in the way of, like marching band or umpiring, we always find a way to do it, and that just shows that progeria isn't in control of my life.

So what would you like to say to researchers here in the auditorium and others listening to this? What would you say to them both about research on progeria and maybe about other conditions as well?

Well, research on progeria has come so far in less than 15 years, and that just shows the drive that researchers can have to get this far, and it really means a lot to myself and other kids with progeria, and it shows that if that drive exists, anybody can cure any disease, and hopefully progeria can be cured in the near future, and so we can eliminate those 4,000 diseases that Francis was talking about.

Excellent. So Sam took the day off from school today to be here, and he is ——He is, by the way, a straight-A+ student in the ninth grade in his school in Boston. Please join me in thanking and welcoming Sam.

Thank you very much.

Well done. Well done, buddy.

I just want to say a couple more things about that particular story, and then try to generalize how could we have stories of success all over the place for these diseases, as Sam says, these 4,000 that are waiting for answers. You might have noticed that the drug that is now in clinical trial for progeria is not a drug that was designed for that. It's such a rare disease, it would be hard for a company to justify spending hundreds of millions of dollars to generate a drug. This is a drug that was developed for cancer. Turned out, it didn't work very well for cancer, but it has exactly the right properties, the right shape, to work for progeria, and that's what's happened. Wouldn't it be great if we could do that more systematically? Could we, in fact, encourage all the companies that are out there that have drugs in their freezers that are known to be safe in humans but have never actually succeeded in terms of being effective for the treatments they were tried for? Now we're learning about all these new molecular pathways—some of those could be repositioned or repurposed, or whatever word you want to use, for new applications, basically teaching old drugs new tricks. That could be a phenomenal, valuable activity. We have many discussions now between NIH and companies about doing this that are looking very promising.

And you could expect quite a lot to come from this. There are quite a number of success stories one can point to about how this has led to major advances. The first drug for HIV/AIDS was not developed for HIV/AIDS. It was developed for cancer. It was AZT. It didn't work very well for cancer, but became the first successful antiretroviral, and you can see from the table there are others as well.

So how do we actually make that a more generalizable effort? Well, we have to come up with a partnership between academia, government, the private sector, and patient organizations to make that so. At NIH, we have started this new National Center for Advancing Translational Sciences. It just started last December, and this is one of its goals.

Let me tell you another thing we could do. Wouldn't it be nice to be able to a test a drug to see if it's effective and safe without having to put patients at risk, because that first time you're never quite sure? How do we know, for instance, whether drugs are safe before we give them to people? We test them on animals. And it's not all that reliable, and it's costly, and it's time-consuming. Suppose we could do this instead on human cells. You probably know, if you've been paying attention to some of the science literature that you can now take a skin cell and encourage it to become a liver cell or a heart cell or a kidney cell or a brain cell for any of us. So what if you used those cells as your test for whether a drug is going to work and whether it's going to be safe?

Here you see a picture of a lung on a chip. This is something created by the Wyss Institute in Boston, and what they have done here, if we can run the little video, is to take cells from an individual, turn them into the kinds of cells that are present in the lung, and determine what would happen if you added to this various drug compounds to see if they are toxic or safe. You can see this chip even breathes. It has an air channel. It has a blood channel. And it has cells in between that allow you to see what happens when you add a compound. Are those cells happy or not? You can do this same kind of chip technology for kidneys, for hearts, for muscles, all the places where you want to see whether a drug is going to be a problem, for the liver.

And ultimately, because you can do this for the individual, we could even see this moving to the point where the ability to develop and test medicines will be you on a chip, what we're trying to say here is the individualizing of the process of developing drugs and testing their safety.

So let me sum up. We are in a remarkable moment here. For me, at NIH now for almost 20 years, there has never been a time where there was more excitement about the potential that lies in front of us. We have made all these discoveries pouring out of laboratories across the world. What do we need to capitalize on this? First of all, we need resources. This is research that's high-risk, sometimes high-cost. The payoff is enormous, both in terms of health and in terms of economic growth. We need to support that. Second, we need new kinds of partnerships between academia and government and the private sector and patient organizations, just like the one I've been describing here, in terms of the way in which we could go after repurposing new compounds. And third, and maybe most important, we need talent. We need the best and the brightest from many different disciplines to come and join this effort—all ages, all different groups—because this is the time, folks. This is the 21st-century biology that you've been waiting for, and we have the chance to take that and turn it into something which will, in fact, knock out disease. That's my goal. I hope that's your goal. I think it'll be the goal of the poets and the muppets and the surfers and the bankers and all the other people who join this stage and think about what we're trying to do here and why it matters. It matters for now. It matters as soon as possible. If you don't believe me, just ask Sam.

Thank you all very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!