下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Nick Bostrom:當電腦變得比人類聰明時...」- What Happens When Our Computers Get Smarter than We Are?


框選或點兩下字幕可以直接查字典喔!

I work with a bunch of mathematicians, philosophers and computer scientists, and we sit around and think about the future of machine intelligence, among other things. Some people think that some of these things are sort of science fiction-y, far out there, crazy. But I like to say, okay, let's look at the modern human condition. This is the normal way for things to be.

But if we think about it, we are actually recently arrived guests on this planet, the human species. Think about if Earth was created one year ago, the human species, then, would be 10 minutes old. The industrial era started two seconds ago. Another way to look at this is to think of world GDP over the last 10,000 years, I've actually taken the trouble to plot this for you in a graph. It looks like this. It's a curious shape for a normal condition. I sure wouldn't want to sit on it.

Let's ask ourselves, what is the cause of this current anomaly? Some people would say it's technology. Now it's true, technology has accumulated through human history, and right now, technology advances extremely rapidly—that is the proximate cause, that's why we are currently so very productive. But I like to think back further to the ultimate cause.

Look at these two highly distinguished gentlemen: We have Kanzi—he's mastered 200 lexical tokens, an incredible feat. And Ed Witten unleashed the second superstring revolution. If we look under the hood, this is what we find: basically the same thing. One is a little larger, it maybe also has a few tricks in the exact way it's wired. These invisible differences cannot be too complicated, however, because there have only been 250,000 generations since our last common ancestor. We know that complicated mechanisms take a long time to evolve. So a bunch of relatively minor changes take us from Kanzi to Witten, from broken-off tree branches to intercontinental ballistic missiles.

So this then seems pretty obvious that everything we've achieved, and everything we care about, depends crucially on some relatively minor changes that made the human mind. And the corollary, of course, is that any further changes that could significantly change the substrate of thinking could have potentially enormous consequences.

Some of my colleagues think we're on the verge of something that could cause a profound change in that substrate, and that is machine super intelligence. Artificial intelligence used to be about putting commands in a box. You would have human programmers that would painstakingly handcraft knowledge items. You build up these expert systems, and they were kind of useful for some purposes, but they were very brittle, you couldn't scale them. Basically, you got out only what you put in. But since then, a paradigm shift has taken place in the field of artificial intelligence. Today, the action is really around machine learning. So rather than handcrafting knowledge representations and features, we create algorithms that learn, often from raw perceptual data. Basically the same thing that the human infant does. The result is A.I. that is not limited to one domain—the same system can learn to translate between any pairs of languages, or learn to play any computer game on the Atari console. Now of course, A.I. is still nowhere near having the same powerful, cross-domain ability to learn and plan as a human being has. The cortex still has some algorithmic tricks that we don't yet know how to match in machines.

So the question is, how far are we from being able to match those tricks? A couple of years ago, we did a survey of some of the world's leading A.I. experts, to see what they think, and one of the questions we asked was, "By which year do you think there is a 50 percent probability that we will have achieved human-level machine intelligence?" We defined human-level here as the ability to perform almost any job at least as well as an adult human, so real human-level, not just within some limited domain. And the median answer was 2040 or 2050, depending on precisely which group of experts we asked. Now, it could happen much, much later, or sooner, the truth is nobody really knows.

What we do know is that the ultimate limit to information processing in a machine substrate lies far outside the limits in biological tissue. This comes down to physics. A biological neuron fires, maybe, at 200 hertz, 200 times a second. But even a present-day transistor operates at the Gigahertz. Neurons propagate slowly in axons, 100 meters per second, tops. But in computers, signals can travel at the speed of light. There are also size limitations, like a human brain has to fit inside a cranium, but a computer can be the size of a warehouse or larger. So the potential for superintelligence lies dormant in matter, much like the power of the atom lay dormant throughout human history, patiently waiting there until 1945. In this century, scientists may learn to awaken the power of artificial intelligence. And I think we might then see an intelligence explosion.

Now most people, when they think about what is smart and what is dumb, I think have in mind a picture roughly like this. So at one end we have the village idiot, and then far over at the other side we have Ed Witten, or Albert Einstein, or whoever your favorite guru is. But I think that from the point of view of artificial intelligence, the true picture is actually probably more like this: AI starts out at this point here, at zero intelligence, and then, after many, many years of really hard work, maybe eventually we get to mouse-level artificial intelligence, something that can navigate cluttered environments as well as a mouse can. And then, after many, many more years of really hard work, lots of investment, maybe eventually we get to chimpanzee-level artificial intelligence. And then, after even more years of really, really hard work, we get to village idiot artificial intelligence. And a few moments later, we are beyond Ed Witten. The train doesn't stop at Humanville Station. It's likely, rather, to swoosh right by.

Now this has profound implications, particularly when it comes to questions of power. For example, chimpanzees are strong—pound for pound, a chimpanzee is about twice as strong as a fit human male. And yet, the fate of Kanzi and his pals depends a lot more on what we humans do than on what the chimpanzees do themselves. Once there is superintelligence, the fate of humanity may depend on what the superintelligence does. Think about it: Machine intelligence is the last invention that humanity will ever need to make. Machines will then be better at inventing than we are, and they'll be doing so on digital timescales. What this means is basically a telescoping of the future. Think of all the crazy technologies that you could have imagined maybe humans could have developed in the fullness of time: cures for aging, space colonization, self-replicating nanobots or uploading of minds into computers, all kinds of science fiction-y stuff that's nevertheless consistent with the laws of physics. All of this superintelligence could develop, and possibly quite rapidly.

Now, a superintelligence with such technological maturity would be extremely powerful, and at least in some scenarios, it would be able to get what it wants. We would then have a future that would be shaped by the preferences of this A.I. Now a good question is, what are those preferences? Here it gets trickier. To make any headway with this, we must first of all avoid anthropomorphizing. And this is ironic because every newspaper article about the future of A.I. has a picture of this: So I think what we need to do is to conceive of the issue more abstractly, not in terms of vivid Hollywood scenarios.

We need to think of intelligence as an optimization process, a process that steers the future into a particular set of configurations. A superintelligence is a really strong optimization process. It's extremely good at using available means to achieve a state in which its goal is realized. This means that there is no necessary conenction between being highly intelligent in this sense, and having an objective that we humans would find worthwhile or meaningful. Suppose we give an A.I. the goal to make humans smile. When the A.I. is weak, it performs useful or amusing actions that cause its user to smile. When the A.I. becomes superintelligent, it realizes that there is a more effective way to achieve this goal: take control of the world and stick electrodes into the facial muscles of humans to cause constant, beaming grins. Another example, suppose we give A.I. the goal to solve a difficult mathematical problem. When the A.I. becomes superintelligent, it realizes that the most effective way to get the solution to this problem is by transforming the planet into a giant computer, so as to increase its thinking capacity. And notice that this gives the A.I.s an instrumental reason to do things to us that we might not approve of. Human beings in this model are threats, we could prevent the mathematical problem from being solved.

Of course, perceivably things won't go wrong in these particular ways; these are cartoon examples. But the general point here is important: if you create a really powerful optimization process to maximize for objective x, you better make sure that your definition of x incorporates everything you care about. This is a lesson that's also taught in many a myth. King Midas wishes that everything he touches be turned into gold. He touches his daughter, she turns into gold. He touches his food, it turns into gold. This could become practically relevant, not just as a metaphor for greed, but as an illustration of what happens if you create a powerful optimization process and give it misconceived or poorly specified goals.

Now you might say, if a computer starts sticking electrodes into people's faces, we'd just shut it off. A, this is not necessarily so easy to do if we've grown dependent on the system—like, where is the off switch to the Internet? B, why haven't the chimpanzees flicked the off switch to humanity, or the Neanderthals? They certainly had reasons. We have an off switch, for example, right here. The reason is that we are an intelligent adversary; we can anticipate threats and plan around them. But so could a superintelligent agent, and it would be much better at that than we are. The point is, we should not be confident that we have this under control here. And we could try to make our job a little bit easier by, say, putting the A.I. in a box, like a secure software environment, a virtual reality simulation from which it cannot escape. But how confident can we be that the A.I. couldn't find a bug. Given that merely human hackers find bugs all the time, I'd say, probably not very confident. So we disconnect the ethernet cable to create an air gap, but again, like merely human hackers routinely transgress air gaps using social engineering. Right now, as I speak, I'm sure there is some employee out there somewhere who has been talked into handing out her account details by somebody claiming to be from the I.T. department.

More creative scenarios are also possible, like if you're the A.I., you can imagine wiggling electrodes around in your internal circuitry to create radio waves that you can use to communicate. Or maybe you could pretend to malfunction, and then when the programmers open you up to see what went wrong with you, they look at the source code—Bam!—the manipulation can take place. Or it could output the blueprint to a really nifty technology, and when we implement it, it has some surreptitious side effect that the A.I. had planned. The point here is that we should not be confident in our ability to keep a superintelligent genie locked up in its bottle forever. Sooner or later, it will out.

I believe that the answer here is to figure out how to create superintelligent A.I. such that even if—when—it escapes, it is still safe because it is fundamentally on our side because it shares our values. I see no way around this difficult problem.

Now, I'm actually fairly optimistic that this problem can be solved. We wouldn't have to write down a long list of everything we care about, or worse yet, spell it out in some computer language like C++ or Python, that would be a task beyond hopeless. Instead, we would create an A.I. that uses its intelligence to learn what we value, and its motivation system is constructed in such a way that it is motivated to pursue our values or to perform actions that it predicts we would approve of. We would thus leverage its intelligence as much as possible to solve the problem of value-loading.

This can happen, and the outcome could be very good for humanity. But it doesn't happen automatically. The initial conditions for the intelligence explosion might need to be set up in just the right way if we are to have a controlled detonation. The values that the A.I. has need to match ours, not just in the familiar context, like where we can easily check how the A.I. behaves, but also in all novel contexts that the A.I. might encounter in the indefinite future.

And there are also some esoteric issues that would need to be solved, sorted out: the exact details of its decision theory, how to deal with logical uncertainty and so forth. So the technical problems that need to be solved to make this work look quite difficult—not as difficult as making a superintelligent A.I., but fairly difficult. Here is the worry: Making superintelligent A.I. is a really hard challenge. Making superintelligent A.I. that is safe involves some additional challenge on top of that. The risk is that if somebody figures out how to crack the first challenge without also having cracked the additional challenge of ensuring perfect safety.

So I think that we should work out a solution to the control problem in advance, so that we have it available by the time it is needed. Now it might be that we cannot solve the entire control problem in advance because maybe some elements can only be put in place once you know the details of the architecture where it will be implemented. But the more of the control problem that we solve in advance, the better the odds that the transition to the machine intelligence era will go well.

This to me looks like a thing that is well worth doing and I can imagine that if things turn out okay, that people a million years from now look back at this century and it might well be that they say that the one thing we did that really mattered was to get this thing right.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!