下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Cédric Villani:數學之美」- What's So Sexy about Math?

觀看次數:2813  • 

框選或點兩下字幕可以直接查字典喔!

What is it that French people do better than all the others? If you would take polls, the top three answers might be: love, wine and whining. Maybe. But let me suggest a fourth one: mathematics. Did you know that Paris has more mathematicians than any other city in the world? And more streets with mathematicians' names, too. And if you look at the statistics of the Fields Medal, often called the Nobel Prize for mathematics, and always awarded to mathematicians below the age of 40, you will find that France has more Fields medalists per inhabitant than any other country.

What is it that we find so sexy in math? After all, it seems to be dull and abstract, just numbers and computations and rules to apply. Mathematics may be abstract, but it's not dull and it's not about computing. It is about reasoning and proving our core activity. It is about imagination, the talent which we most praise. It is about finding the truth. There's nothing like the feeling which invades you when after months of hard thinking, you finally understand the right reasoning to solve your problem. The great mathematician Andre Weil likened this—no kidding—to sexual pleasure. But noted that this feeling can last for hours, or even days.

The reward may be big. Hidden mathematical truths permeate our whole physical world. They are inaccessible to our senses but can be seen through mathematical lenses. Close your eyes for moment and think of what is occurring right now around you. Invisible particles from the air around are bumping on you by the billions and billions at each second, all in complete chaos. And still, their statistics can be accurately predicted by mathematical physics. And open your eyes now to the statistics of the velocities of these particles.

The famous bell-shaped Gauss Curve, or the Law of Errors—of deviations with respect to the mean behavior. This curve tells about the statistics of velocities of particles in the same way as a demographic curve would tell about the statistics of ages of individuals. It's one of the most important curves ever. It keeps on occurring again and again, from many theories and many experiments, as a great example of the universality which is so dear to us mathematicians.

Of this curve, the famous scientist Francis Galton said, "It would have been deified by the Greeks if they had known it. It is the supreme law of unreason." And there's no better way to materialize that supreme goddess than Galton's Board. Inside this board are narrow tunnels through which tiny balls will fall down randomly, going right or left, or left, etc. All in complete randomness and chaos. Let's see what happens when we look at all these random trajectories together.

This is a bit of a sport, because we need to resolve some traffic jams in there. Aha. We think that randomness is going to play me a trick on stage.

There it is. Our supreme goddess of unreason. the Gauss Curve, trapped here inside this transparent box as Dream in "The Sandman" comics. For you I have shown it, but to my students I explain why it could not be any other curve. And this is touching the mystery of that goddess, replacing a beautiful coincidence by a beautiful explanation.

All of science is like this. And beautiful mathematical explanations are not only for our pleasure. They also change our vision of the world. For instance, Einstein, Perrin, Smoluchowski, they used the mathematical analysis of random trajectories and the Gauss Curve to explain and prove that our world is made of atoms.

It was not the first time that mathematics was revolutionizing our view of the world. More than 2,000 years ago, at the time of the ancient Greeks, it already occurred. In those days, only a small fraction of the world had been explored, and the Earth might have seemed infinite. But clever Eratosthenes, using mathematics, was able to measure the Earth with an amazing accuracy of two percent.

Here's another example. In 1673, Jean Richer noticed that a pendulum swings slightly slower in Cayenne than in Paris. From this observation alone, and clever mathematics, Newton rightly deduced that the Earth is a wee bit flattened at the poles, like 0.3 percent—so tiny that you wouldn't even notice it on the real view of the Earth.

These stories show that mathematics is able to make us go out of our intuition, measure the Earth which seems infinite, see atoms which are invisible or detect an imperceptible variation of shape. And if there is just one thing that you should take home from this talk, it is this: mathematics allows us to go beyond the intuition and explore territories which do not fit within our grasp.

Here's a modern example you will all relate to: searching the Internet. The World Wide Web, more than one billion web pages—do you want to go through them all? Computing power helps, but it would be useless without the mathematical modeling to find the information hidden in the data.

Let's work out a baby problem. Imagine that you're a detective working on a crime case, and there are many people who have their version of the facts. Who do you want to interview first? Sensible answer: prime witnesses. You see, suppose that there is person number seven, tells you a story, but when you ask where he got if from, he points to person number three as a source. And maybe person number three, in turn, points at person number one as the primary source. Now number one is a prime witness, so I definitely want to interview him—priority. And from the graph we also see that person number four is a prime witness. And maybe I even want to interview him first, because there are more people who refer to him.

Okay. That was easy, but now what about if you have a big bunch of people who will testify? And this graph, I may think of it as all people who testify in a complicated crime case, but it may just as well be web pages pointing to each other, referring to each other for contents. Which ones are the most authoritative? Not so clear.

Enter PageRank, one of the early cornerstones of Google. This algorithm uses the laws of mathematical randomness to determine automatically the most relevant web pages, in the same way as we used randomness in the Galton Board experiment. So let's send into this graph a bunch of tiny, digital marbles and let them go randomly through the graph. Each time they arrive at some site, they will go out through some link chosen at random to the next one. And again, and again, and again. And with small, growing piles, we'll keep the record of how many times each site has been visited by these digital marbles.

Here we go. Randomness, randomness. And from time to time, also let's make jumps completely randomly to increase the fun.

And look at this: from the chaos will emerge the solution. The highest piles correspond to those sites which somehow are better connected than the others, more pointed at than the others. And here we see clearly which are the web pages we want to first try. Once again, the solution emerges from the randomness. Of course, since that time, Google has come up with much more sophisticated algorithms, but already this was beautiful.

And still, just one problem in a million. With the advent of digital area, more and more problems lend themselves to mathematical analysis, making the job of mathematician a more and more useful one, to the extent that a few years ago, it was ranked number one among hundreds of jobs in a study about the best and worst jobs published by the Wall Street Journal in 2009.

Mathematician—best job in the world. That's because of the applications: communication theory, information theory, game theory, compressed sensing, machine learning, graph analysis, harmonic analysis. And why not stochastic processes, linear programming, or fluid simulation? Each of these fields have monster industrial applications. And through them, there is big money in mathematics. And let me concede that when it comes to making money from the math, the Americans are by a long shot the world champions, with clever, emblematic billionaires and amazing, giant companies, all resting, ultimately, on good algorithm.

Now with all this beauty, usefulness and wealth, mathematics does look more sexy. But don't you think that the life a mathematical researcher is an easy one. It is filled with perplexity, frustration, a desperate fight for understanding.

Let me evoke for you one of the most striking days in my mathematician's life. Or should I say, one of the most striking nights. At that time, I was staying at the Institute for Advanced Studies in Princeton—for many years, the home of Albert Einstein and arguably the most holy place for mathematical research in the world. And that night I was working and working on an elusive proof, which was incomplete. It was all about understanding the paradoxical stability property of plasmas, which are a crowd of electrons. In the perfect world of plasma, there are no collisions and no friction to provide the stability like we are used to. But still, if you slightly perturb a plasma equilibrium, you will find that the resulting electric shield spontaneously vanishes, or damps out, as if by some mysterious friction force.

This paradoxical effect, called the Landau damping, is one of the most important in plasma physics, and it was discovered through mathematical ideas. But still, a full mathematical understanding of this phenomenon was missing. And together with my former student and main collaborator Clement Mouhot, in Paris at the time, we had been working for months and months on such a proof. Actually, I had already announced by mistake that we could solve it. But the truth is, the proof was just not working. In spite of more than 100 pages of complicated, mathematical arguments, and a bunch discoveries, and huge calculation, it was not working. And that night in Princeton, a certain gap in the chain of arguments was driving me crazy. I was putting in there all my energy and experience and tricks, and still nothing was working. 1 a.m., 2 a.m., 3 a.m., not working. Around 4 a.m., I go to bed in low spirits. Then a few hours later, waking up and go, "Ah, it's time to get the kids to school—" What is this? There was this voice in my head, I swear. "Take the second term to the other side, Fourier transform and invert in L2."

Damn it! That was the start of the solution!

You see, I thought I had taken some rest, but really my brain had continued to work on it. In those moments, you don't think of your career or your colleagues, it's just a complete battle between the problem and you.

That being said, it does not harm when you do get a promotion in reward for your hard work. And after we completed our huge analysis of the Landau damping, I was lucky enough to get the most coveted Fields Medal from the hands of the President of India, in Hyderabad on 19 August, 2010—an honor that mathematicians never dare to dream, a day that I will remember until I live.

What do you think, on such an occasion? Pride, yes? And gratitude to the man collaborators who made this possible. And because it was a collective adventure, you need to share it, not just with your collaborators. I believe that everybody can appreciate the thrill of mathematical research, and share the passionate stories of humans and ideas behind it. And I've been working with my staff at Institut Henri Poincare, together with partners and artists of mathematical communication worldwide, so that we can found our own, very special museum of mathematics there.

So in a few years, when you come to Paris, after tasting the great, crispy baguette and macaroon, please come and visit us at Institut Henri Poincare, and share the mathematical dream with us.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!