下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
你的 IE 瀏覽器太舊了 更新 IE 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎? 點這裡重寄一次
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方 平台,不適用於非 希平方 平台所有或控制的公司,也不適用於非 希平方 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方 所提供之會員服務。當您開始使用 希平方 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方 所有,須經希平方同意合法才得以使用。
希平方歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Zeynep Tufekci:機器智慧時代,堅守人類道德更形重要」- Machine Intelligence Makes Human Morals More Important


框選或點兩下字幕可以直接查字典喔!

So, I started my first job as a computer programmer in my very first year of college—basically, as a teenager.

Soon after I started working, writing software in a company, a manager who worked at the company came down to where I was, and he whispered to me, "Can he tell if I'm lying?" There was nobody else in the room.

"Can who tell if you're lying? And why are we whispering?" The manager pointed at the computer in the room. "Can he tell if I'm lying?" Well, that manager was having an affair with the receptionist. And I was still a teenager. So I whisper-shouted back to him, "Yes, the computer can tell if you're lying."

Well, I laughed, but actually, the laugh's on me. Nowadays, there are computational systems that can suss out emotional states and even lying from processing human faces. Advertisers and even governments are very interested.

I had become a computer programmer because I was one of those kids crazy about math and science. But somewhere along the line I'd learned about nuclear weapons, and I'd gotten really concerned with the ethics of science. I was troubled. However, because of family circumstances, I also needed to start working as soon as possible. So I thought to myself, hey, let me pick a technical fieldwhere I can get a job easily and where I don't have to deal with any troublesome questions of ethics. So I picked computers.

Well, ha, ha, ha! All the laughs are on me. Nowadays, computer scientists are building platforms that control what a billion people see every day. They're developing cars that could decide who to run over. They're even building machines, weapons, that might kill human beings in war. It's ethics all the way down.

Machine intelligence is here. We're now using computation to make all sort of decisions, but also new kinds of decisions. We're asking questions to computation that have no single right answers, that are subjective and open-ended and value-laden. We're asking questions like, "Who should the company hire?" "Which update from which friend should you be shown?" "Which convict is more likely to reoffend?" "Which news item or movie should be recommended to people?"

Look, yes, we've been using computers for a while, but this is different. This is a historical twist, because we cannot anchor computation for such subjective decisions the way we can anchor computation for flying airplanes, building bridges, going to the moon. Are airplanes safer? Did the bridge sway and fall? There, we have agreed-upon, fairly clear benchmarks, and we have laws of nature to guide us. We have no such anchors and benchmarks for decisions in messy human affairs.

To make things more complicated, our software is getting more powerful, but it's also getting less transparent and more complex. Recently, in the past decade, complex algorithms have made great strides. They can recognize human faces. They can decipher handwriting. They can detect credit card fraud and block spam and they can translate between languages. They can detect tumors in medical imaging. They can beat humans in chess and Go. Much of this progress comes from a method called "machine learning." Machine learning is different than traditional programming, where you give the computer detailed, exact, painstaking instructions. It's more like you take the system and you feed it lots of data, including unstructured data, like the kind we generate in our digital lives. And the system learns by churning through this data. And also, crucially, these systems don't operate under a single-answer logic. They don't produce a simple answer; it's more probabilistic:"This one is probably more like what you're looking for."

Now, the upside is: this method is really powerful. The head of Google's AI systems called it, "the unreasonable effectiveness of data."The downside is, we don't really understand what the system learned. In fact, that's its power. This is less like giving instructions to a computer; it's more like training a puppy-machine-creature we don't really understand or control. So this is our problem. It's a problem when this artificial intelligence system gets things wrong. It's also a problem when it gets things right, because we don't even know which is which when it's a subjective problem. We don't know what this thing is thinking.

So, consider a hiring algorithm—a system used to hire people, using machine-learning systems. Such a system would have been trained on previous employees' data and instructed to find and hire people like the existing high performers in the company. Sounds good. I once attended a conference that brought together human resources managers and executives, high-level people, using such systems in hiring. They were super excited. They thought that this would make hiring more objective, less biased, and give women and minorities a better shot against biased human managers. And look—human hiring is biased. I know. I mean, in one of my early jobs as a programmer, my immediate manager would sometimes come down to where I was really early in the morning or really late in the afternoon, and she'd say, "Zeynep, let's go to lunch!" I'd be puzzled by the weird timing. It's 4pm. Lunch? I was broke, so free lunch. I always went. I later realized what was happening. My immediate managers had not confessed to their higher-ups that the programmer they hired for a serious job was a teen girl who wore jeans and sneakers to work. I was doing a good job, I just looked wrong and was the wrong age and gender. So hiring in a gender- and race-blind way certainly sounds good to me. But with these systems, it is more complicated, and here's why: Currently, computational systems can infer all sorts of things about you from your digital crumbs, even if you have not disclosed those things. They can infer your sexual orientation, your personality traits, your political leanings. They have predictive power with high levels of accuracy. Remember—for things you haven't even disclosed. This is inference.

I have a friend who developed such computational systems to predict the likelihood of clinical or postpartum depression from social media data. The results are impressive. Her system can predict the likelihood of depression months before the onset of any symptoms—months before. No symptoms, there's prediction. She hopes it will be used for early intervention. Great! But now put this in the context of hiring. So at this human resources managers conference, I approached a high-level manager in a very large company, and I said to her, "Look, what if, unbeknownst to you, your system is weeding out people with high future likelihood of depression? They're not depressed now, just maybe in the future, more likely. What if it's weeding out women more likely to be pregnant in the next year or two but aren't pregnant now? What if it's hiring aggressive people because that's your workplace culture?" You can't tell this by looking at gender breakdowns. Those may be balanced. And since this is machine learning, not traditional coding, there is no variable there labeled "higher risk of depression," "higher risk of pregnancy," "aggressive guy scale." Not only do you not know what your system is selecting on, you don't even know where to begin to look. It's a black box. It has predictive power, but you don't understand it.

"What safeguards," I asked, "do you have to make sure that your black box isn't doing something shady?" She looked at me as if I had just stepped on 10 puppy tails.

She stared at me and she said, "I don't want to hear another word about this." And she turned around and walked away. Mind you—she wasn't rude. It was clearly: what I don't know isn't my problem, go away, death stare.

Look, such a system may even be less biased than human managers in some ways. And it could make monetary sense. But it could also lead to a steady but stealthy shutting out of the job market of people with higher risk of depression. Is this the kind of society we want to build, without even knowing we've done this, because we turned decision-making to machines we don't totally understand?

Another problem is this: these systems are often trained on data generated by our actions, human imprints. Well, they could just be reflecting our biases, and these systems could be picking up on our biases and amplifying them and showing them back to us, while we're telling ourselves, "We're just doing objective, neutral computation."

Researchers found that on Google, women are less likely than men to be shown job ads for high-paying jobs. And searching for African-American names is more likely to bring up ads suggesting criminal history, even when there is none. Such hidden biases and black-box algorithms that researchers uncover sometimes but sometimes we don't know, can have life-altering consequences.

In Wisconsin, a defendant was sentenced to six years in prison for evading the police. You may not know this, but algorithms are increasingly used in parole and sentencing decisions. He wanted to know: How is this score calculated? It's a commercial black box. The company refused to have its algorithm be challenged in open court. But ProPublica, an investigative nonprofit, audited that very algorithm with what public data they could find, and found that its outcomes were biased and its predictive power was dismal, barely better than chance, and it was wrongly labeling black defendants as future criminals at twice the rate of white defendants.

So, consider this case: This woman was late picking up her godsister from a school in Broward County, Florida, running down the street with a friend of hers. They spotted an unlocked kid's bike and a scooter on a porch and foolishly jumped on it. As they were speeding off, a woman came out and said, "Hey! That's my kid's bike!" They dropped it, they walked away, but they were arrested.

She was wrong, she was foolish, but she was also just 18. She had a couple of juvenile misdemeanors. Meanwhile, that man had been arrested for shoplifting in Home Depot—85 dollars' worth of stuff, a similar petty crime. But he had two prior armed robbery convictions. But the algorithm scored her as high risk, and not him. Two years later, ProPublica found that she had not reoffended. It was just hard to get a job for her with her record. He, on the other hand, did reoffend and is now serving an eight-year prison term for a later crime. Clearly, we need to audit our black boxes and not have them have this kind of unchecked power. Audits are great and important, but they don't solve all our problems. Take Facebook's powerful news feed algorithm—you know, the one that ranks everything and decides what to show you from all the friends and pages you follow. Should you be shown another baby picture? A sullen note from an acquaintance? An important but difficult news item? There's no right answer. Facebook optimizes for engagement on the site: likes, shares, comments.

In August of 2014, protests broke out in Ferguson, Missouri, after the killing of an African-American teenager by a white police officer,under murky circumstances. The news of the protests was all over my algorithmically unfiltered Twitter feed, but nowhere on my Facebook. Was it my Facebook friends? I disabled Facebook's algorithm, which is hard because Facebook keeps wanting to make you come under the algorithm's control, and saw that my friends were talking about it. It's just that the algorithm wasn't showing it to me. I researched this and found this was a widespread problem. The story of Ferguson wasn't algorithm-friendly. It's not "likable." Who's going to click on "like?" It's not even easy to comment on. Without likes and comments, the algorithm was likely showing it to even fewer people, so we didn't get to see this. Instead, that week, Facebook's algorithm highlighted this, which is the ALS Ice Bucket Challenge. Worthy cause; dump ice water, donate to charity, fine. But it was super algorithm-friendly. The machine made this decision for us. A very important but difficult conversation might have been smothered, had Facebook been the only channel.

Now, finally, these systems can also be wrong in ways that don't resemble human systems. Do you guys remember Watson, IBM's machine-intelligence system that wiped the floor with human contestants on Jeopardy? It was a great player. But then, for Final Jeopardy, Watson was asked this question: "Its largest airport is named for a World War II hero, its second-largest for a World War II battle."

Chicago. The two humans got it right. Watson, on the other hand, answered "Toronto"—for a US city category! The impressive system also made an error that a human would never make, a second-grader wouldn't make.

Our machine intelligence can fail in ways that don't fit error patterns of humans, in ways we won't expect and be prepared for. It'd be lousy not to get a job one is qualified for, but it would triple suck if it was because of stack overflow in some subroutine. In May of 2010, a flash crash on Wall Street fueled by a feedback loop in Wall Street's "sell" algorithm wiped a trillion dollars of value in 36 minutes. I don't even want to think what "error" means in the context of lethal autonomous weapons.

So yes, humans have always made biases. Decision makers and gatekeepers, in courts, in news, in war ... they make mistakes; but that's exactly my point. We cannot escape these difficult questions. We cannot outsource our responsibilities to machines.

Artificial intelligence does not give us a "Get out of ethics free" card.

Data scientist Fred Benenson calls this math-washing. We need the opposite. We need to cultivate algorithm suspicion, scrutiny and investigation. We need to make sure we have algorithmic accountability, auditing and meaningful transparency. We need to accept that bringing math and computation to messy, value-laden human affairs does not bring objectivity; rather, the complexity of human affairs invades the algorithms. Yes, we can and we should use computation to help us make better decisions. But we have to own up to our moral responsibility to judgment, and use algorithms within that framework, not as a means to abdicate and outsource our responsibilities to one another as human to human.

Machine intelligence is here. That means we must hold on ever tighter to human values and human ethics. Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、上一句、下一句:顧名思義,以句子為單位重覆播放,單句重覆鍵顯示橘色時為重覆播放狀態;顯示灰色時為正常播放狀態。按上一句鍵、下一句鍵時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:用滑鼠框選英文單字可以收藏不會的單字。
  • 分享
    如果您覺得本篇短片很有趣或很喜歡,在短片結束時有分享連結,可以分享給朋友一同欣賞,一起看YouTube學英文!

    或是您有收錄很優秀的句子時,也可以分享佳句給大家,一同看佳句學英文!