下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Brian Cox:探險者的必要」- Why We Need the Explorers

觀看次數:2435  • 

框選或點兩下字幕可以直接查字典喔!

We live in difficult and challenging economic times, of course. And one of the first victims of difficult economic times, I think, is public spending of any kind, but certainly in the firing line at the moment is public spending for science, and particularly curiosity-led science and exploration. So I want to try and convince you in about 15 minutes that that's a ridiculous and ludicrous thing to do.

But I think to set the scene, I want to show—the next slide is not my attempt to show the worst TED slide in the history of TED, but it is a bit of a mess. But actually, it's not my fault; it's from the Guardian newspaper. And it's actually a beautiful demonstration of how much science costs. Because, if I'm going to make the case for continuing to spend on curiosity-driven science and exploration, I should tell you how much it costs. So this is a game called "spot the science budgets." This is the U.K. government spend. You see there, it's about 620 billion a year.

The science budget is actually—if you look to your left, there's a purple set of blobs and then yellow set of blobs. And it's one of the yellow set of blobs around the big yellow blob. It's about 3.3 billion pounds per year out of 620 billion. That funds everything in the U.K. from medical research, space exploration, where I work, at CERN in Geneva, particle physics, engineering, even arts and humanities, funded from the science budget, which is that 3.3 billion, that little, tiny yellow blob around the orange blob at the top left of the screen. So that's what we're arguing about. That percentage, by the way, is about the same in the U.S. and Germany and France. R&D in total in the economy, publicly funded, is about 0.6 percent of GDP. So that's what we're arguing about.

The first thing I want to say, and this is straight from "Wonders of the Solar System," is that our exploration of the solar system and the universe has shown us that it is indescribably beautiful. This is a picture that actually was sent back by the Cassini space probe around Saturn, after we'd finished filming "Wonders of the Solar System." So it isn't in the series. It's of the moon Enceladus. So that big sweeping, white sphere in the corner is Saturn, which is actually in the background of the picture. And that crescent there is the moon Enceladus, which is about as big as the British Isles. It's about 500 kilometers in diameter. So, tiny moon. What's fascinating and beautiful...this an unprocessed picture, by the way, I should say, it's black and white, straight from Saturnian orbit.

What's beautiful is, you can probably see on the limb there some faint, sort of, wisps of almost smoke rising up from the limb. This is how we visualize that in "Wonders of the Solar System." It's a beautiful graphic. What we found out were that those faint wisps are actually fountains of ice rising up from the surface of this tiny moon. That's fascinating and beautiful in itself, but we think that the mechanism for powering those fountains requires there to be lakes of liquid water beneath the surface of this moon. And what's important about that is that, on our planet, on Earth, wherever we find liquid water, we find life. So, to find strong evidence of liquid, pools of liquid, beneath the surface of a moon 750 million miles away from the Earth is really quite astounding. So what we're saying, essentially, is maybe that's a habitat for life in the solar system. Well, let me just say, that was a graphic. I just want to show this picture. That's one more picture of Enceladus. This is when Cassini flew beneath Enceladus. So it made a very low pass, just a few hundred kilometers above the surface. And so this, again, a real picture of the ice fountains rising up into space, absolutely beautiful.

But that's not the prime candidate for life in the solar system. That's probably this place, which is a moon of Jupiter, Europa. And again, we had to fly to the Jovian system to get any sense that this moon, as most moons, was anything other than a dead ball of rock. It's actually an ice moon. So what you're looking at is the surface of the moon Europa, which is a thick sheet of ice, probably a hundred kilometers thick. But by measuring the way that Europa interacts with the magnetic field of Jupiter, and looking at how those cracks in the ice that you can see there on that graphic move around, we've inferred very strongly that there's an ocean of liquid surrounding the entire surface of Europa. So below the ice, there's an ocean of liquid around the whole moon. It could be hundreds of kilometers deep, we think. We think it's saltwater, and that would mean that there's more water on that moon of Jupiter than there is in all the oceans of the Earth combined. So that place, a little moon around Jupiter, is probably the prime candidate for finding life on a moon or a body outside the Earth, that we know of. Tremendous and beautiful discovery.

Our exploration of the solar system has taught us that the solar system is beautiful. It may also have pointed the way to answering one of the most profound questions that you can possibly ask, which is: "Are we alone in the universe?" Is there any other use to exploration and science, other than just a sense of wonder? Well, there is. This is a very famous picture taken, actually, on my first Christmas Eve, December 24th, 1968, when I was about eight months old. It was taken by Apollo 8 as it went around the back of the moon. Earthrise from Apollo 8. A famous picture; many people have said that it's the picture that saved 1968, which was a turbulent year—and the student riots in Paris, the height of the Vietnam War. The reason many people think that about this picture, and Al Gore has said it many times, actually, on the stage at TED, is that this picture, arguably, was the beginning of the environmental movement. Because, for the first time, we saw our world, not as a solid, immovable, kind of indestructible place, but as a very small, fragile-looking world just hanging against the blackness of space.

What's also not often said about the space exploration, about the Apollo program, is the economic contribution it made. I mean while you can make arguments that it was wonderful and a tremendous achievement and delivered pictures like this, it cost a lot, didn't it? Well, actually, many studies have been done about the economic effectiveness, the economic impact of Apollo. The biggest one was in 1975 by Chase Econometrics. And it showed that for every $1 spent on Apollo, 14 came back into the U.S. economy. So the Apollo program paid for itself in inspiration, in engineering, achievement and, I think, in inspiring young scientists and engineers 14 times over. So exploration can pay for itself.

What about scientific discovery? What about driving innovation? Well, this looks like a picture of virtually nothing. What it is, is a picture of the spectrum of hydrogen. See, back in the 1880s, 1890s, many scientists, many observers, looked at the light given off from atoms. And they saw strange pictures like this. What you're seeing when you put it through a prism is that you heat hydrogen up and it doesn't just glow like a white light, it just emits light at particular colors, a red one, a light blue one, some dark blue ones. Now that led to an understanding of atomic structure because the way that's explained is atoms are a single nucleus with electrons going around them. And the electrons can only be in particular places. And when they jump up to the next place they can be, and fall back down again, they emit light at particular colors.

And so the fact that atoms, when you heat them up, only emit light at very specific colors, was one of the key drivers that led to the development of the quantum theory, the theory of the structure of atoms. I just wanted to show this picture because this is remarkable. This is actually a picture of the spectrum of the Sun. And now, this is a picture of atoms in the Sun's atmosphere absorbing light. And again, they only absorb light at particular colors when electrons jump up and fall down, jump up and fall down. But look at the number of black lines in that spectrum. And the element helium was discovered just by staring at the light from the Sun because some of those black lines were found that corresponded to no known element. And that's why helium's called helium. It's called "helios"—helios from the Sun.

Now, that sounds esoteric, and indeed it was an esoteric pursuit, but the quantum theory quickly led to an understanding of the behaviors of electrons in materials like silicon, for example. The way that silicon behaves, the fact that you can build transistors, is a purely quantum phenomenon. So without that curiosity-driven understanding of the structure of atoms, which led to this rather esoteric theory, quantum mechanics, then we wouldn't have transistors, we wouldn't have silicon chips, we wouldn't have pretty much the basis of our modern economy.

There's one more, I think, wonderful twist to that tale. In "Wonders of the Solar System," we kept emphasizing the laws of physics are universal. It's one of the most incredible things about the physics and the understanding of nature that you get on Earth, is you can transport it, not only to the planets, but to the most distant stars and galaxies. And one of the astonishing predictions of quantum mechanics, just by looking at the structure of atoms—the same theory that describes transistors—is that there can be no stars in the universe that have reached the end of their life that are bigger than, quite specifically, 1.4 times the mass of the Sun. That's a limit imposed on the mass of stars. You can work it out on a piece of paper in a laboratory, get a telescope, swing it to the sky, and you find that there are no dead stars bigger than 1.4 times the mass of the Sun. That's quite an incredible prediction.

What happens when you have a star that's right on the edge of that mass? Well, this is a picture of it. This is the picture of a galaxy, a common "our garden" galaxy with, what, 100 billion stars like our Sun in it. It's just one of billions of galaxies in the universe. There are a billion stars in the galactic core, which is why it's shining out so brightly. This is about 50 million light years away, so one of our neighboring galaxies. But that bright star there is actually one of the stars in the galaxy. So that star is also 50 million light years away. It's part of that galaxy, and it's shining as brightly as the center of the galaxy with a billion suns in it. That's a Type Ia supernova explosion. Now that's an incredible phenomena, because it's a star that sits there. It's called a carbon-oxygen dwarf. It sits there about, say, 1.3 times the mass of the Sun. And it has a binary companion that goes around it, so a big star, a big ball of gas. And what it does is it sucks gas off its companion star, until it gets to this limit called the Chandrasekhar limit, and then it explodes. And it explodes, and it shines as brightly as a billion suns for about two weeks, and releases, not only energy, but a huge amount of chemical elements into the universe. In fact, that one is a carbon-oxygen dwarf.

Now, there was no carbon and oxygen in the universe at the Big Bang. And there was no carbon and oxygen in the universe throughout the first generation of stars. It was made in stars like that, locked away and then returned to the universe in explosions like that in order to recondense into planets, stars, new solar systems and, indeed, people like us. I think that's a remarkable demonstration of the power and beauty and universality of the laws of physics, because we understand that process, because we understand the structure of atoms here on Earth.

This is a beautiful quote that I found—we're talking about serendipity there—from Alexander Fleming:"When I woke up just after dawn on September 28, 1928, I certainly didn't plan to revolutionize all medicine by discovering the world's first antibiotic." Now, the explorers of the world of the atom did not intend to invent the transistor. And they certainly didn't intend to describe the mechanics of supernova explosions, which eventually told us where the building blocks of life were synthesized in the universe. So, I think science can be—serendipity is important. It can be beautiful. It can reveal quite astonishing things. It can also, I think, finally reveal the most profound ideas to us about our place in the universe and really the value of our home planet.

This is a spectacular picture of our home planet. Now, it doesn't look like our home planet. It looks like Saturn because, of course, it is. It was taken by the Cassini space probe. But it's a famous picture, not because of the beauty and majesty of Saturn's rings, but actually because of a tiny, faint blob just hanging underneath one of the rings. And if I blow it up there, you see it. It looks like a moon, but in fact, it's a picture of Earth. It was a picture of Earth captured in that frame of Saturn. That's our planet from 750 million miles away. I think the Earth has got a strange property that the farther away you get from it, the more beautiful it seems.

But that is not the most distant or most famous picture of our planet. It was taken by this thing, which is called the Voyager spacecraft. And that's a picture of me in front of it for scale. The Voyager is a tiny machine. It's currently 10 billion miles away from Earth, transmitting with that dish, with the power of 20 watts, and we're still in contact with it. But it visited Jupiter, Saturn, Uranus and Neptune. And after it visited all four of those planets, Carl Sagan, who's one of my great heroes, had the wonderful idea of turning Voyager around and taking a picture of every planet it had visited. And it took this picture of Earth. Now it's very hard to see the Earth there, it's called the "Pale Blue Dot" picture, but Earth is suspended in that red shaft of light. That's Earth from four billion miles away.

And I'd like to read you what Sagan wrote about it, just to finish, because I cannot say words as beautiful as this to describe what he saw in that picture that he had taken. He said, "Consider again that dot. That's here. That's home. That's us. On it, everyone you love, everyone you know, everyone you've ever heard of, every human being who ever was lived out their lives. The aggregates of joy and suffering thousands of confident religions, ideologies and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every superstar, every supreme leader, every saint and sinner in the history of our species, lived there, on a mote of dust, suspended in a sunbeam. It's been said that astronomy's a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another and to preserve and cherish the pale blue dot, the only home we've ever known."

Beautiful words about the power of science and exploration. The argument has always been made, and it will always be made, that we know enough about the universe. You could have made it in the 1920s; you wouldn't have had penicillin. You could have made it in the 1890s; you wouldn't have the transistor. And it's made today in these difficult economic times. Surely, we know enough. We don't need to discover anything else about our universe.

Let me leave the last words to someone who's rapidly becoming a hero of mine, Humphrey Davy, who did his science at the turn of the 19th century. He was clearly under assault all the time. "We know enough at the turn of the 19th century. Just exploit it; just build things." He said this, he said, "Nothing is more fatal to the progress of the human mind than to presume that our views of science are ultimate, that our triumphs are complete, that there are no mysteries in nature, and that there are no new worlds to conquer."

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!